SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kaptoge S.) srt2:(2020-2023)"

Sökning: WFRF:(Kaptoge S.) > (2020-2023)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kaptoge, S., et al. (författare)
  • Life expectancy associated with different ages at diagnosis of type 2 diabetes in high-income countries: 23 million person-years of observation
  • 2023
  • Ingår i: The Lancet Diabetes and Endocrinology. - : Elsevier. - 2213-8587 .- 2213-8595. ; 11:10, s. 731-742
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The prevalence of type 2 diabetes is increasing rapidly, particularly among younger age groups. Estimates suggest that people with diabetes die, on average, 6 years earlier than people without diabetes. We aimed to provide reliable estimates of the associations between age at diagnosis of diabetes and all-cause mortality, cause-specific mortality, and reductions in life expectancy. Methods: For this observational study, we conducted a combined analysis of individual-participant data from 19 high-income countries using two large-scale data sources: the Emerging Risk Factors Collaboration (96 cohorts, median baseline years 1961–2007, median latest follow-up years 1980–2013) and the UK Biobank (median baseline year 2006, median latest follow-up year 2020). We calculated age-adjusted and sex-adjusted hazard ratios (HRs) for all-cause mortality according to age at diagnosis of diabetes using data from 1 515 718 participants, in whom deaths were recorded during 23·1 million person-years of follow-up. We estimated cumulative survival by applying age-specific HRs to age-specific death rates from 2015 for the USA and the EU. Findings: For participants with diabetes, we observed a linear dose–response association between earlier age at diagnosis and higher risk of all-cause mortality compared with participants without diabetes. HRs were 2·69 (95% CI 2·43–2·97) when diagnosed at 30–39 years, 2·26 (2·08–2·45) at 40–49 years, 1·84 (1·72–1·97) at 50–59 years, 1·57 (1·47–1·67) at 60–69 years, and 1·39 (1·29–1·51) at 70 years and older. HRs per decade of earlier diagnosis were similar for men and women. Using death rates from the USA, a 50-year-old individual with diabetes died on average 14 years earlier when diagnosed aged 30 years, 10 years earlier when diagnosed aged 40 years, or 6 years earlier when diagnosed aged 50 years than an individual without diabetes. Using EU death rates, the corresponding estimates were 13, 9, or 5 years earlier. Interpretation: Every decade of earlier diagnosis of diabetes was associated with about 3–4 years of lower life expectancy, highlighting the need to develop and implement interventions that prevent or delay the onset of diabetes and to intensify the treatment of risk factors among young adults diagnosed with diabetes. Funding: British Heart Foundation, Medical Research Council, National Institute for Health and Care Research, and Health Data Research UK.
  •  
2.
  • Hageman, S., et al. (författare)
  • SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe
  • 2021
  • Ingår i: European Heart Journal. - : Oxford University Press (OUP). - 0195-668X .- 1522-9645. ; 42:25, s. 2439-2454
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims The aim of this study was to develop, validate, and illustrate an updated prediction model (SCORE2) to estimate 10-year fatal and non-fatal cardiovascular disease (CVD) risk in individuals without previous CVD or diabetes aged 40-69 years in Europe. Methods and results We derived risk prediction models using individual-participant data from 45 cohorts in 13 countries (677 684 individuals, 30 121 CVD events). We used sex-specific and competing risk-adjusted models, including age, smoking status, systolic blood pressure, and total- and HDL-cholesterol. We defined four risk regions in Europe according to country-specific CVD mortality, recalibrating models to each region using expected incidences and risk factor distributions. Region-specific incidence was estimated using CVD mortality and incidence data on 10 776 466 individuals. For external validation, we analysed data from 25 additional cohorts in 15 European countries (1 133 181 individuals, 43 492 CVD events). After applying the derived risk prediction models to external validation cohorts, C-indices ranged from 0.67 (0.65-0.68) to 0.81 (0.76-0.86). Predicted CVD risk varied several-fold across European regions. For example, the estimated 10-year CVD risk for a 50-year-old smoker, with a systolic blood pressure of 140 mmHg, total cholesterol of 5.5 mmol/L, and HDL-cholesterol of 1.3 mmol/L, ranged from 5.9% for men in low- risk countries to 14.0% for men in very high-risk countries, and from 4.2% for women in low-risk countries to 13.7% for women in very high-risk countries. Conclusion SCORE2-a new algorithm derived, calibrated, and validated to predict 10-year risk of first-onset CVD in European populations-enhances the identification of individuals at higher risk of developing CVD across Europe.
  •  
3.
  • Ostergaard, H. B., et al. (författare)
  • Estimating individual lifetime risk of incident cardiovascular events in adults with Type 2 diabetes: an update and geographical calibration of the DIAbetes Lifetime perspective model (DIAL2)
  • 2023
  • Ingår i: European Journal of Preventive Cardiology. - : Oxford University Press (OUP). - 2047-4873 .- 2047-4881. ; 30:1, s. 61-69
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims The 2021 European Society of Cardiology cardiovascular disease (CVD) prevention guidelines recommend the use of (lifetime) risk prediction models to aid decisions regarding intensified preventive treatment options in adults with Type 2 diabetes, e.g. the DIAbetes Lifetime perspective model (DIAL model). The aim of this study was to update the DIAL model using contemporary and representative registry data (DIAL2) and to systematically calibrate the model for use in other European countries. Methods and results The DIAL2 model was derived in 467 856 people with Type 2 diabetes without a history of CVD from the Swedish National Diabetes Register, with a median follow-up of 7.3 years (interquartile range: 4.0-10.6 years) and comprising 63 824 CVD (including fatal CVD, non-fatal stroke and non-fatal myocardial infarction) events and 66 048 non-CVD mortality events. The model was systematically recalibrated to Europe's low- and moderate-risk regions using contemporary incidence data and mean risk factor distributions. The recalibrated DIAL2 model was externally validated in 218 267 individuals with Type 2 diabetes from the Scottish Care Information-Diabetes (SCID) and Clinical Practice Research Datalink (CPRD). In these individuals, 43 074 CVD events and 27 115 non-CVD fatal events were observed. The DIAL2 model discriminated well, with C-indices of 0.732 [95% confidence interval (CI) 0.726-0.739] in CPRD and 0.700 (95% CI 0.691-0.709) in SCID. Conclusion The recalibrated DIAL2 model provides a useful tool for the prediction of CVD-free life expectancy and lifetime CVD risk for people with Type 2 diabetes without previous CVD in the European low- and moderate-risk regions. These long-term individualized measures of CVD risk are well suited for shared decision-making in clinical practice as recommended by the 2021 CVD ESC prevention guidelines.
  •  
4.
  • Gaziano, Liam, et al. (författare)
  • Mild-to-moderate kidney dysfunction and cardiovascular disease : Observational and mendelian randomization analyses
  • 2022
  • Ingår i: Circulation. - : Wolters Kluwer. - 0009-7322 .- 1524-4539. ; 146:20, s. 1507-1517
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: End-stage renal disease is associated with a high risk of cardiovascular events. It is unknown, however, whether mild-to-moderate kidney dysfunction is causally related to coronary heart disease (CHD) and stroke.METHODS: Observational analyses were conducted using individual-level data from 4 population data sources (Emerging Risk Factors Collaboration, EPIC-CVD [European Prospective Investigation into Cancer and Nutrition-Cardiovascular Disease Study], Million Veteran Program, and UK Biobank), comprising 648 135 participants with no history of cardiovascular disease or diabetes at baseline, yielding 42 858 and 15 693 incident CHD and stroke events, respectively, during 6.8 million person-years of follow-up. Using a genetic risk score of 218 variants for estimated glomerular filtration rate (eGFR), we conducted Mendelian randomization analyses involving 413 718 participants (25 917 CHD and 8622 strokes) in EPIC-CVD, Million Veteran Program, and UK Biobank.RESULTS: There were U-shaped observational associations of creatinine-based eGFR with CHD and stroke, with higher risk in participants with eGFR values <60 or >105 mL·min-1·1.73 m-2, compared with those with eGFR between 60 and 105 mL·min-1·1.73 m-2. Mendelian randomization analyses for CHD showed an association among participants with eGFR <60 mL·min-1·1.73 m-2, with a 14% (95% CI, 3%-27%) higher CHD risk per 5 mL·min-1·1.73 m-2 lower genetically predicted eGFR, but not for those with eGFR >105 mL·min-1·1.73 m-2. Results were not materially different after adjustment for factors associated with the eGFR genetic risk score, such as lipoprotein(a), triglycerides, hemoglobin A1c, and blood pressure. Mendelian randomization results for stroke were nonsignificant but broadly similar to those for CHD.CONCLUSIONS: In people without manifest cardiovascular disease or diabetes, mild-to-moderate kidney dysfunction is causally related to risk of CHD, highlighting the potential value of preventive approaches that preserve and modulate kidney function.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy