SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Karagiannopoulos Alexandros) "

Sökning: WFRF:(Karagiannopoulos Alexandros)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bacos, Karl, et al. (författare)
  • Type 2 diabetes candidate genes, including PAX5, cause impaired insulin secretion in human pancreatic islets
  • 2023
  • Ingår i: The Journal of clinical investigation. - 0021-9738 .- 1558-8238. ; 133:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 2 diabetes (T2D) is caused by insufficient insulin secretion from pancreatic β-cells. To identify candidates contributing to T2D pathophysiology, we studied human pancreatic islets from ~300 individuals. We found 395 differentially expressed genes (DEGs) in islets from individuals with T2D, including, to our knowledge, novel (OPRD1, PAX5, TET1) and previously identified (CHL1, GLRA1, IAPP) candidates. A third of the identified islet expression changes may predispose to diabetes, as they associated with HbA1c in individuals not previously diagnosed with T2D. Most DEGs were expressed in human β-cells based on single-cell RNA-sequencing data. Additionally, DEGs displayed alterations in open chromatin and associated with T2D-SNPs. Mouse knock-out strains demonstrated that T2D-associated candidates regulate glucose homeostasis and body composition in vivo. Functional validation showed that mimicking T2D-associated changes for OPRD1, PAX5, and SLC2A2 impaired insulin secretion. Impairments in Pax5-overexpressing β-cells were due to severe mitochondrial dysfunction. Finally, we discovered PAX5 as a potential transcriptional regulator of many T2D-associated DEGs in human islets. Overall, we identified molecular alterations in human pancreatic islets contributing to β-cell dysfunction in T2D pathophysiology.
  •  
2.
  • Barghouth, Mohammad, et al. (författare)
  • The T-type calcium channel CaV3.2 regulates insulin secretion in the pancreatic β-cell
  • 2022
  • Ingår i: Cell Calcium. - : Elsevier BV. - 0143-4160. ; 108
  • Tidskriftsartikel (refereegranskat)abstract
    • Voltage-gated Ca2+ (CaV) channel dysfunction leads to impaired glucose-stimulated insulin secretion in pancreatic β-cells and contributes to the development of type-2 diabetes (T2D). The role of the low-voltage gated T-type CaV channels in β-cells remains obscure. Here we have measured the global expression of T-type CaV3.2 channels in human islets and found that gene expression of CACNA1H, encoding CaV3.2, is negatively correlated with HbA1c in human donors, and positively correlated with islet insulin gene expression as well as secretion capacity in isolated human islets. Silencing or pharmacological blockade of CaV3.2 attenuates glucose-stimulated cytosolic Ca2+ signaling, membrane potential, and insulin release. Moreover, the endoplasmic reticulum (ER) Ca2+ store depletion is also impaired in CaV3.2-silenced β-cells. The linkage between T-type (CaV3.2) and L-type CaV channels is further identified by the finding that the intracellular Ca2+ signaling conducted by CaV3.2 is highly dependent on the activation of L-type CaV channels. In addition, CACNA1H expression is significantly associated with the islet predominant L-type CACNA1C (CaV1.2) and CACNA1D (CaV1.3) genes in human pancreatic islets. In conclusion, our data suggest the essential functions of the T-type CaV3.2 subunit as a mediator of β-cell Ca2+ signaling and membrane potential needed for insulin secretion, and in connection with L-type CaV channels.
  •  
3.
  •  
4.
  • Cowan, Elaine, et al. (författare)
  • MicroRNAs in Type 2 Diabetes : Focus on MicroRNA Profiling in Islets of Langerhans
  • 2022
  • Ingår i: Type-1 Diabetes : Methods and Protocols - Methods and Protocols. - New York, NY : Springer US. - 1940-6029. - 9781071628065 - 9781071628072 ; :2592, s. 113-142
  • Bokkapitel (refereegranskat)abstract
    • Differential expression of microRNAs (miRNAs) is observed in many diseases including type 2 diabetes (T2D). Insulin secretion from pancreatic beta cells is central for the regulation of blood glucose levels and failure to release enough insulin results in hyperglycemia and T2D. The importance in T2D pathogenesis of single miRNAs in beta cells has been described; however, to get the full picture, high-throughput miRNA sequencing is necessary. Here we describe a method using small RNA sequencing, from sample preparation to expression analysis using bioinformatic tools. In the end, a tutorial on differential expression analysis is presented in R using publicly available data.
  •  
5.
  • Dos Santos, Cristiane, et al. (författare)
  • Glucocorticoids and glucolipotoxicity alter the DNA methylome and function of human EndoC-βH1 cells
  • 2022
  • Ingår i: Life Sciences. - : Elsevier BV. - 1879-0631 .- 0024-3205. ; 307
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS: Synthetic glucocorticoids, including dexamethasone (DEX), are clinically prescribed due to their immunoregulatory properties. In excess they can perturb glucose homeostasis, with individuals predisposed to glucose intolerance more sensitive to these negative effects. While DEX is known to negatively impact β-cell function, it is unclear how. Hence, our aim was to investigate the effect of DEX on β-cell function, both alone and in combination with a diabetogenic milieu in the form of elevated glucose and palmitate.MAIN METHODS: Human pancreatic EndoC-βH1 cells were cultured in the presence of high glucose and palmitate (glucolipotoxicity) and/or a pharmacological concentration of DEX, before functional and molecular analyses.KEY FINDINGS: Either treatment alone resulted in reduced insulin content and secretion, while the combination of DEX and glucolipotoxicity promoted a strong synergistic effect. These effects were associated with reduced insulin biosynthesis, likely due to downregulation of PDX1, MAFA, and the proinsulin converting enzymes, as well as reduced ATP response upon glucose stimulation. Genome-wide DNA methylation analysis found changes on PDE4D, MBNL1 and TMEM178B, all implicated in β-cell function, after all three treatments. DEX alone caused very strong demethylation of the glucocorticoid-regulated gene ZBTB16, also known to influence the β-cell, while the combined treatment caused altered methylation of many known β-cell regulators and diabetes candidate genes.SIGNIFICANCE: DEX treatment and glucolipotoxic conditions separately alter the β-cell epigenome and function. The combination of both treatments exacerbates these changes, showing that caution is needed when prescribing potent glucocorticoids in patients with dysregulated metabolism.
  •  
6.
  • Esguerra, Jonathan L.S., et al. (författare)
  • Glucocorticoid induces human beta cell dysfunction by involving riborepressor GAS5 LincRNA
  • 2020
  • Ingår i: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 32, s. 160-167
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: A widely recognized metabolic side effect of glucocorticoid (GC) therapy is steroid-induced diabetes mellitus (DM). However, studies on the molecular basis of GC-induced pancreatic beta cell dysfunction in human beta cells are lacking. The significance of non-coding RNAs in various cellular processes is emerging. In this study, we aimed to show the direct negative impact of GC on beta cell function and elucidate the role of riborepressor GAS5 lincRNA in the GC signaling pathway in human pancreatic beta cells. Methods: Patients undergoing two weeks of high-dose prednisolone therapy were monitored for C-peptide levels. Human pancreatic islets and the human beta cell line EndoC-βH1 were incubated in pharmacological concentrations of dexamethasone. The GAS5 level was modulated using anti-sense LNA gapmeR or short oligonucleotides with GAS5 HREM (hormone response element motif). Immunoblotting and/or real-time PCR were used to assess changes in protein and RNA expression, respectively. Functional characterization included glucose-stimulated insulin secretion and apoptosis assays. Correlation analysis was performed on RNAseq data of human pancreatic islets. Results: We found reduced C-peptide levels in patients undergoing high-dose GC therapy. Human islets and the human beta cell line EndoC-βH1 exposed to GC exhibited reduced insulin secretion and increased apoptosis. Concomitantly, reduced expression of important beta cell transcription factors, PDX1 and NKX6-1, as well as exocytotic protein SYT13 were observed. The expression of the glucocorticoid receptor was decreased, while that of serum and glucocorticoid-regulated kinase 1 (SGK1) was elevated. The expression of these genes was found to significantly correlate with GAS5 in human islet transcriptomics data. Increasing GAS5 levels using GAS5 HREM alleviated the inhibitory effects of dexamethasone on insulin secretion. Conclusions: The direct adverse effect of glucocorticoid in human beta cell function is mediated via important beta cell proteins and components of the GC signaling pathway in an intricate interplay with GAS5 lincRNA, a potentially novel therapeutic target to counter GC-mediated beta cell dysfunction.
  •  
7.
  •  
8.
  • Karagiannopoulos, Alexandros, et al. (författare)
  • Glucocorticoid-mediated induction of ZBTB16 affects insulin secretion in human islets and EndoC-βH1 β-cells
  • 2023
  • Ingår i: iScience. - 2589-0042. ; 26:5, s. 1-23
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucocorticoid use is associated with steroid-induced diabetes mellitus and impaired pancreatic β-cell insulin secretion. Here, the glucocorticoid-mediated transcriptomic changes in human pancreatic islets and the human insulin-secreting EndoC-βH1 cells were investigated to uncover genes involved in β-cell steroid stress-response processes. Bioinformatics analysis revealed glucocorticoids to exert their effects mainly on enhancer genomic regions in collaboration with auxiliary transcription factor families including AP-1, ETS/TEAD, and FOX. Remarkably, we identified the transcription factor ZBTB16 as a highly confident direct glucocorticoid target. Glucocorticoid-mediated induction of ZBTB16 was time- and dose-dependent. Manipulation of ZBTB16 expression in EndoC-βH1 cells combined with dexamethasone treatment demonstrated its protective role against glucocorticoid-induced reduction of insulin secretion and mitochondrial function impairment. In conclusion, we determine the molecular impact of glucocorticoids on human islets and insulin-secreting cells and investigate the effects of glucocorticoid targets on β-cell function. Our findings can pave the way for therapies against steroid-induced diabetes mellitus.
  •  
9.
  • Karagiannopoulos, Alexandros, et al. (författare)
  • Human pancreatic islet miRNA-mRNA networks of altered miRNAs due to glycemic status
  • 2022
  • Ingår i: iScience. - : Elsevier BV. - 2589-0042. ; 25:4
  • Tidskriftsartikel (refereegranskat)abstract
    • MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression via mRNA targeting, playing important roles in the pancreatic islets. We aimed to identify molecular pathways and genomic regulatory regions associated with altered miRNA expression due to glycemic status, which could contribute to the development of type 2 diabetes (T2D). To this end, miRNAs were identified by a combination of differential miRNA expression and correlation analysis in human islet samples from donors with normal and elevated blood glucose levels. Analysis and clustering of highly correlated, experimentally validated gene targets of these miRNAs revealed two islet-specific clusters, which were associated with key aspects of islet functions and included a high number of T2D-related genes. Finally, cis-eQTLs and public GWAS data integration uncovered suggestive genomic signals of association with insulin secretion and T2D. The miRNA-driven network-based approach presented in this study contributes to a better understanding of impaired insulin secretion in T2D pathogenesis.
  •  
10.
  • Karagiannopoulos, Alexandros, et al. (författare)
  • miRNAs in the beta cell - friends or foes?
  • 2023
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 164:5
  • Forskningsöversikt (refereegranskat)abstract
    • Type-2 diabetes (T2D) develops due to insulin resistance and an inability of the pancreatic β-cells to increase secretion of insulin and reduce elevated blood glucose levels. Diminished β-cell function and mass have been implicated in impaired β-cell secretory capacity and several microRNAs (miRNAs) have been reported to be involved in regulating β-cell processes. We believe miRNAs are nodes in important miRNA-mRNA networks regulating β-cell function and that miRNAs therefore can be targets for the treatment of T2D. MiRNAs are short (≈19-23nt) endogenous non-coding RNAs which regulate gene expression by directly binding to the mRNA of their target genes. Under normal circumstances miRNAs act as rheostats to keep expression of their gene targets at optimal levels for different β-cell outputs. In T2D, levels of some miRNAs are altered as part of the compensatory mechanism to improve insulin secretion. Other miRNAs are differentially expressed as part of the process of T2D pathogenesis, which results in reduced insulin secretion and increased blood glucose. In this review we present recent findings concerning miRNAs in islets and in insulin-secreting cells, and their differential expression in diabetes, with a specific focus on miRNAs involved in β-cell apoptosis/proliferation and glucose-stimulated insulin secretion. We present thoughts around miRNA-mRNA networks, and miRNAs as both therapeutic targets to improve insulin secretion and as circulating biomarkers of diabetes. Overall, we hope to convince you that miRNAs in β-cells are essential for regulating their function and can in the future be of clinical use in treatment and/or prevention of diabetes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy