SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Karlsson Sigbritt) srt2:(2020-2022)"

Sökning: WFRF:(Karlsson Sigbritt) > (2020-2022)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kittikorn, Thorsak, et al. (författare)
  • Enhancement of interfacial adhesion and engineering properties of polyvinyl alcohol/polylactic acid laminate films filled with modified microfibrillated cellulose
  • 2020
  • Ingår i: Journal of plastic film & sheeting (Print). - : SAGE Publications Ltd. - 8756-0879 .- 1530-8014. ; 36:4, s. 368-390
  • Tidskriftsartikel (refereegranskat)abstract
    • This work was done to improve the interfacial adhesion and engineering performance of polyvinyl alcohol/polylactic acid laminate film by altering the polyvinyl alcohol phase surface properties via incorporating microfibrillated cellulose modified by propionylation. Incorporating the modified microfibrillated cellulose into polyvinyl alcohol film improved adhesion between film layers during the laminating process. Improved peel strength and tensile properties confirmed that modified microfibrillated cellulose can produce better bonding between polyvinyl alcohol and polylactic acid via mechanical interlocking and cohesive forces at the film interface. Modified microfibrillated cellulose (3 wt%) increased the peel strength by 40% comparing with the neat polyvinyl alcohol/polylactic acid laminate film.The reduction of both moisture absorption and diffusion rate of the modified microfibrillated cellulose–polyvinyl alcohol/polylactic acid to 20 and 23%, respectively, also indicated that the modified microfibrillated cellulose could inhibit moisture permeation across the film. This was because the modified microfibrillated cellulose is hydrophobic. Furthermore, the addition of modified microfibrillated cellulose also increased the decomposition temperature of the laminate film up to 10% as observed at 20% of remaining weight, while the storage modulus substantially increasing to 72% relative to the neat laminate film.The superior interfacial adhesion between the polylactic acid and modified microfibrillated cellulose–polyvinyl alcohol layers, observed by scanning electron microscopy, confirmed the improved compatibility between the polyvinyl alcohol and polylactic acid phases.
  •  
2.
  • Kittikorn, Thorsak, et al. (författare)
  • Influence of sisal fibre modification on the microbial stability of poly(hydroxybutyrate-co-valerate) : thermal analysis
  • 2022
  • Ingår i: Polimery. - : INDUSTRIAL CHEMISTRY RESEARCH INST. - 0032-2725. ; 67:3, s. 93-101
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of modification of sisal fibre with propionic anhydride and vinyltrimethoxy silane on the microbiological stability of poly(hydroxybutyrate-co-valerate) (PHBV) was investigated. The effect of the coupling agent - PHBV grafted with maleic anhydride (PHBV-g-MA) was also investigated. The best adhesion at the interface was observed for propionylation of sisal fibre, which improved the thermal properties of the composites. Composites with modified sisal fibre were characterized by higher activation energy (155 kJ/mol), which is related to stronger interactions at the matrix-fibre interface. In the microbial growth test, all biocomposites showed a decrease in molecular weight due to enzymatic degradation by Aspergillus niger. The most resistant to microorganisms was the composite containing propionylated sisal fibre. DMTA and TGA also confirmed the highest microbiological stability of the composite with the addition of propionylated sisal fibre, as evidenced by the smallest change in the properties after the microbiological growth test. In contrast, PHBV-g-MA caused significant enzymatic degradation due to the presence of large amorphous regions.
  •  
3.
  •  
4.
  • Távora de Mello Soares, Camila, et al. (författare)
  • Recycling of multi-material multilayer plastic packaging : Current trends and future scenarios
  • 2022
  • Ingår i: Resources, Conservation and Recycling. - : Elsevier BV. - 0921-3449 .- 1879-0658. ; 176
  • Tidskriftsartikel (refereegranskat)abstract
    • Multi-material multilayer plastic packaging (MMPP) is widely applied in fast moving consumer goods (FMCG) combining functionalities of distinct materials. These packaging structures can enhance properties, such as resource-use efficiency and barrier performance leading to consequential benefits like a prolonged shelf-life. Nevertheless, they represent a challenge for existing recycling systems, confronting circular economy principles. This study aim was to foresight the future of recycling technologies for MMPP in the next five to ten years. Future scenarios were identified, including (1) high-performance material recycling, (2) recycling into hydrocarbons, (3) business as usual, and (4) downcycling. In-depth interviews and a feedback survey were methods used to validate the scenario matrix while defining experts' expectations towards the future. The analysis showed that distinct technologies will develop unevenly in different parts of the world. A mix of all scenarios is probable in the upcoming years, depending, essentially, on regulations and technology availability. Advanced high-performance material recycling encounters systemic bottlenecks, such as insufficient sorting technology for post-consumer waste. In contrast, chemical recycling (feedstock) is concentrating investments as a solution, requiring low input-characterization. Additionally, design for recycling trends might reduce multilayers' complexity. A gap between recycling targets and recycling technologies was identified, representing short-term opportunities for more sustainable materials, such as bio-based.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy