SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Karlsson Wirebring Linnea 1979 ) srt2:(2022)"

Sökning: WFRF:(Karlsson Wirebring Linnea 1979 ) > (2022)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jonsson, Bert, Professor, 1961-, et al. (författare)
  • Creative Mathematical Reasoning : Does Need for Cognition Matter?
  • 2022
  • Ingår i: Frontiers in Psychology. - : Frontiers Media S.A.. - 1664-1078. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • A large portion of mathematics education centers heavily around imitative reasoning and rote learning, raising concerns about students’ lack of deeper and conceptual understanding of mathematics. To address these concerns, there has been a growing focus on students learning and teachers teaching methods that aim to enhance conceptual understanding and problem-solving skills. One suggestion is allowing students to construct their own solution methods using creative mathematical reasoning (CMR), a method that in previous studies has been contrasted against algorithmic reasoning (AR) with positive effects on test tasks. Although previous studies have evaluated the effects of CMR, they have ignored if and to what extent intrinsic cognitive motivation play a role. This study investigated the effects of intrinsic cognitive motivation to engage in cognitive strenuous mathematical tasks, operationalized through Need for Cognition (NFC), and working memory capacity (WMC). Two independent groups, consisting of upper secondary students (N = 137, mean age 17.13, SD = 0.62, 63 boys and 74 girls), practiced non-routine mathematical problem solving with CMR and AR tasks and were tested 1 week later. An initial t-test confirmed that the CMR group outperformed the AR group. Structural equation modeling revealed that NFC was a significant predictor of math performance for the CMR group but not for the AR group. The results also showed that WMC was a strong predictor of math performance independent of group. These results are discussed in terms of allowing for time and opportunities for struggle with constructing own solution methods using CMR, thereby enhancing students conceptual understanding.
  •  
2.
  • Karlsson Wirebring, Linnea, 1979-, et al. (författare)
  • An fMRI intervention study of creative mathematical reasoning : behavioral and brain effects across different levels of cognitive ability
  • 2022
  • Ingår i: Trends in Neuroscience and Education. - : Elsevier. - 2452-0837 .- 2211-9493. ; 29
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Many learning methods of mathematical reasoning encourage imitative procedures (algorithmic reasoning, AR) instead of more constructive reasoning processes (creative mathematical reasoning, CMR). Recent research suggest that learning with CMR compared to AR leads to better performance and differential brain activity during a subsequent test. Here, we considered the role of individual differences in cognitive ability in relation to effects of CMR.Methods: We employed a within-subject intervention (N=72, MAge=18.0) followed by a brain-imaging session (fMRI) one week later. A battery of cognitive tests preceded the intervention. Participants were divided into three cognitive ability groups based on their cognitive score (low, intermediate and high).Results: On mathematical tasks previously practiced with CMR compared to AR we observed better performance, and higher brain activity in key regions for mathematical cognition such as left angular gyrus and left inferior/middle frontal gyrus. The CMR-effects did not interact with cognitive ability, albeit the effects on performance were driven by the intermediate and high cognitive ability groups.Conclusions: Encouraging pupils to engage in constructive processes when learning mathematical reasoning confers lasting learning effects on brain activation, independent of cognitive ability. However, the lack of a CMR-effect on performance for the low cognitive ability group suggest future studies should focus on individualized learning interventions, allowing more opportunities for effortful struggle with CMR.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy