SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Karsten A) srt2:(2015-2019)"

Sökning: WFRF:(Karsten A) > (2015-2019)

  • Resultat 1-10 av 50
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Semb, G, et al. (författare)
  • Erratum
  • 2017
  • Ingår i: Journal of plastic surgery and hand surgery. - 2000-6764. ; 51:2, s. 158-158
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  • Wuttke, Matthias, et al. (författare)
  • A catalog of genetic loci associated with kidney function from analyses of a million individuals
  • 2019
  • Ingår i: Nature Genetics. - : NATURE PUBLISHING GROUP. - 1061-4036 .- 1546-1718. ; 51:6, s. 957-972
  • Tidskriftsartikel (refereegranskat)abstract
    • Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through transancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these,147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.
  •  
5.
  • Janssen, Annette B. G., et al. (författare)
  • Exploring, exploiting and evolving diversity of aquatic ecosystem models : a community perspective
  • 2015
  • Ingår i: Aquatic Ecology. - : Springer Science and Business Media LLC. - 1386-2588 .- 1573-5125. ; 49:4, s. 513-548
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, we present a community perspective on how to explore, exploit and evolve the diversity in aquatic ecosystem models. These models play an important role in understanding the functioning of aquatic ecosystems, filling in observation gaps and developing effective strategies for water quality management. In this spirit, numerous models have been developed since the 1970s. We set off to explore model diversity by making an inventory among 42 aquatic ecosystem modellers, by categorizing the resulting set of models and by analysing them for diversity. We then focus on how to exploit model diversity by comparing and combining different aspects of existing models. Finally, we discuss how model diversity came about in the past and could evolve in the future. Throughout our study, we use analogies from biodiversity research to analyse and interpret model diversity. We recommend to make models publicly available through open-source policies, to standardize documentation and technical implementation of models, and to compare models through ensemble modelling and interdisciplinary approaches. We end with our perspective on how the field of aquatic ecosystem modelling might develop in the next 5-10 years. To strive for clarity and to improve readability for non-modellers, we include a glossary.
  •  
6.
  • Kawakatsu, Taiji, et al. (författare)
  • Epigenomic Diversity in a Global Collection of Arabidopsis thaliana Accessions
  • 2016
  • Ingår i: Cell. - : Elsevier. - 0092-8674 .- 1097-4172. ; 166:2, s. 492-505
  • Tidskriftsartikel (refereegranskat)abstract
    • The epigenome orchestrates genome accessibility, functionality, and three-dimensional structure. Because epigenetic variation can impact transcription and thus phenotypes, it may contribute to adaptation. Here, we report 1,107 high-quality single-base resolution methylomes and 1,203 transcriptomes from the 1001 Genomes collection of Arabidopsis thaliana. Although the genetic basis of methylation variation is highly complex, geographic origin is a major predictor of genome-wide DNA methylation levels and of altered gene expression caused by epialleles. Comparison to cistrome and epicistrome datasets identifies associations between transcription factor binding sites, methylation, nucleotide variation, and co-expression modules. Physical maps for nine of the most diverse genomes reveal how transposons and other structural variants shape the epigenome, with dramatic effects on immunity genes. The 1001 Epigenomes Project provides a comprehensive resource for understanding how variation in DNA methylation contributes to molecular and non-molecular phenotypes in natural populations of the most studied model plant.
  •  
7.
  • Alonso-Blanco, Carlos, et al. (författare)
  • 1,135 Genomes Reveal the Global Pattern of Polymorphism in Arabidopsis thaliana
  • 2016
  • Ingår i: Cell. - : Elsevier. - 0092-8674 .- 1097-4172. ; 166:2, s. 481-491
  • Tidskriftsartikel (refereegranskat)abstract
    • Arabidopsis thaliana serves as a model organism for the study of fundamental physiological, cellular, and molecular processes. It has also greatly advanced our understanding of intraspecific genome variation. We present a detailed map of variation in 1,135 high-quality re-sequenced natural inbred lines representing the native Eurasian and North African range and recently colonized North America. We identify relict populations that continue to inhabit ancestral habitats, primarily in the Iberian Peninsula. They have mixed with a lineage that has spread to northern latitudes from an unknown glacial refugium and is now found in a much broader spectrum of habitats. Insights into the history of the species and the fine-scale distribution of genetic diversity provide the basis for full exploitation of A. thaliana natural variation through integration of genomes and epigenomes with molecular and non-molecular phenotypes.
  •  
8.
  • Bruce, Louise C, et al. (författare)
  • A multi-lake comparative analysis of the General Lake Model (GLM) : Stress-testing across a global observatory network
  • 2018
  • Ingår i: Environmental Modelling & Software. - : Elsevier BV. - 1364-8152 .- 1873-6726. ; 102, s. 274-291
  • Tidskriftsartikel (refereegranskat)abstract
    • The modelling community has identified challenges for the integration and assessment of lake models due to the diversity of modelling approaches and lakes. In this study, we develop and assess a one-dimensional lake model and apply it to 32 lakes from a global observatory network. The data set included lakes over broad ranges in latitude, climatic zones, size, residence time, mixing regime and trophic level. Model performance was evaluated using several error assessment metrics, and a sensitivity analysis was conducted for nine parameters that governed the surface heat exchange and mixing efficiency. There was low correlation between input data uncertainty and model performance and predictions of temperature were less sensitive to model parameters than prediction of thermocline depth and Schmidt stability. The study provides guidance to where the general model approach and associated assumptions work, and cases where adjustments to model parameterisations and/or structure are required.
  •  
9.
  • Baeten, Lander, et al. (författare)
  • Identifying the tree species compositions that maximize ecosystem functioning in European forests
  • 2019
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 56:3, s. 733-744
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Forest ecosystem functioning generally benefits from higher tree species richness, but variation within richness levels is typically large. This is mostly due to the contrasting performances of communities with different compositions. Evidence-based understanding of composition effects on forest productivity, as well as on multiple other functions will enable forest managers to focus on the selection of species that maximize functioning, rather than on diversity per se.2. We used a dataset of 30 ecosystem functions measured in stands with different species richness and composition in six European forest types. First, we quantified whether the compositions that maximize annual above-ground wood production (productivity) generally also fulfil the multiple other ecosystem functions (multifunctionality). Then, we quantified the species identity effects and strength of interspecific interactions to identify the "best" and "worst" species composition for multifunctionality. Finally, we evaluated the real-world frequency of occurrence of best and worst mixtures, using harmonized data from multiple national forest inventories.3. The most productive tree species combinations also tended to express relatively high multifunctionality, although we found a relatively wide range of compositions with high- or low-average multifunctionality for the same level of productivity. Monocultures were distributed among the highest as well as the lowest performing compositions. The variation in functioning between compositions was generally driven by differences in the performance of the component species and, to a lesser extent, by particular interspecific interactions. Finally, we found that the most frequent species compositions in inventory data were monospecific stands and that the most common compositions showed below-average multifunctionality and productivity.4. Synthesis and applications. Species identity and composition effects are essential to the development of high-performing production systems, for instance in forestry and agriculture. They therefore deserve great attention in the analysis and design of functional biodiversity studies if the aim is to inform ecosystem management. A management focus on tree productivity does not necessarily trade-off against other ecosystem functions; high productivity and multifunctionality can be combined with an informed selection of tree species and species combinations.
  •  
10.
  • Beger, Richard D., et al. (författare)
  • Metabolomics enables precision medicine : "A White Paper, Community Perspective"
  • 2016
  • Ingår i: Metabolomics. - : Springer. - 1573-3882 .- 1573-3890. ; 12:10
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION BACKGROUND TO METABOLOMICS: Metabolomics is the comprehensive study of the metabolome, the repertoire of biochemicals (or small molecules) present in cells, tissues, and body fluids. The study of metabolism at the global or "-omics" level is a rapidly growing field that has the potential to have a profound impact upon medical practice. At the center of metabolomics, is the concept that a person's metabolic state provides a close representation of that individual's overall health status. This metabolic state reflects what has been encoded by the genome, and modified by diet, environmental factors, and the gut microbiome. The metabolic profile provides a quantifiable readout of biochemical state from normal physiology to diverse pathophysiologies in a manner that is often not obvious from gene expression analyses. Today, clinicians capture only a very small part of the information contained in the metabolome, as they routinely measure only a narrow set of blood chemistry analytes to assess health and disease states. Examples include measuring glucose to monitor diabetes, measuring cholesterol and high density lipoprotein/low density lipoprotein ratio to assess cardiovascular health, BUN and creatinine for renal disorders, and measuring a panel of metabolites to diagnose potential inborn errors of metabolism in neonates.OBJECTIVES OF WHITE PAPER—EXPECTED TREATMENT OUTCOMES AND METABOLOMICS ENABLING TOOL FOR PRECISION MEDICINE: We anticipate that the narrow range of chemical analyses in current use by the medical community today will be replaced in the future by analyses that reveal a far more comprehensive metabolic signature. This signature is expected to describe global biochemical aberrations that reflect patterns of variance in states of wellness, more accurately describe specific diseases and their progression, and greatly aid in differential diagnosis. Such future metabolic signatures will: (1) provide predictive, prognostic, diagnostic, and surrogate markers of diverse disease states; (2) inform on underlying molecular mechanisms of diseases; (3) allow for sub-classification of diseases, and stratification of patients based on metabolic pathways impacted; (4) reveal biomarkers for drug response phenotypes, providing an effective means to predict variation in a subject's response to treatment (pharmacometabolomics); (5) define a metabotype for each specific genotype, offering a functional read-out for genetic variants: (6) provide a means to monitor response and recurrence of diseases, such as cancers: (7) describe the molecular landscape in human performance applications and extreme environments. Importantly, sophisticated metabolomic analytical platforms and informatics tools have recently been developed that make it possible to measure thousands of metabolites in blood, other body fluids, and tissues. Such tools also enable more robust analysis of response to treatment. New insights have been gained about mechanisms of diseases, including neuropsychiatric disorders, cardiovascular disease, cancers, diabetes and a range of pathologies. A series of ground breaking studies supported by National Institute of Health (NIH) through the Pharmacometabolomics Research Network and its partnership with the Pharmacogenomics Research Network illustrate how a patient's metabotype at baseline, prior to treatment, during treatment, and post-treatment, can inform about treatment outcomes and variations in responsiveness to drugs (e.g., statins, antidepressants, antihypertensives and antiplatelet therapies). These studies along with several others also exemplify how metabolomics data can complement and inform genetic data in defining ethnic, sex, and gender basis for variation in responses to treatment, which illustrates how pharmacometabolomics and pharmacogenomics are complementary and powerful tools for precision medicine.CONCLUSIONS KEY SCIENTIFIC CONCEPTS AND RECOMMENDATIONS FOR PRECISION MEDICINE: Our metabolomics community believes that inclusion of metabolomics data in precision medicine initiatives is timely and will provide an extremely valuable layer of data that compliments and informs other data obtained by these important initiatives. Our Metabolomics Society, through its "Precision Medicine and Pharmacometabolomics Task Group", with input from our metabolomics community at large, has developed this White Paper where we discuss the value and approaches for including metabolomics data in large precision medicine initiatives. This White Paper offers recommendations for the selection of state of-the-art metabolomics platforms and approaches that offer the widest biochemical coverage, considers critical sample collection and preservation, as well as standardization of measurements, among other important topics. We anticipate that our metabolomics community will have representation in large precision medicine initiatives to provide input with regard to sample acquisition/preservation, selection of optimal omics technologies, and key issues regarding data collection, interpretation, and dissemination. We strongly recommend the collection and biobanking of samples for precision medicine initiatives that will take into consideration needs for large-scale metabolic phenotyping studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 50
Typ av publikation
tidskriftsartikel (47)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (49)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Larson, M. (3)
Lee, H. (2)
Yamamoto, K. (2)
Wright, D. (2)
Sundström, Villy (2)
Lee, A. (2)
visa fler...
De Eyto, Elvira (2)
Hell, Michael (2)
Leijnse, Martin (2)
Flensberg, Karsten (2)
Neovius, E. (2)
Chábera, Pavel (2)
Suzuki, K. (2)
Abe, Y (2)
Park, M (2)
Koch, A. (2)
Kis, E. (2)
Nilsson, C (2)
Persson, Petter (2)
Sharma, M. (2)
Hasegawa, K (2)
Rose, J (2)
Smith, K. (2)
Roberts, P (2)
Svensson, P (2)
Verheugt, FWA (2)
Weckwerth, Wolfram (2)
Hambäck, Peter A. (2)
Ding, Wei (2)
Rodriguez, M (2)
Singh, B (2)
Gupta, M (2)
Orešič, Matej, 1967- (2)
Al-Khalili, F (2)
Prakash, Om (2)
Wang, George (2)
Klein, Alexandra Mar ... (2)
Boreux, Virginie (2)
Alonso-Blanco, Carlo ... (2)
Andrade, Jorge (2)
Becker, Claude (2)
Bemm, Felix (2)
Bergelson, Joy (2)
Chae, Eunyoung (2)
Ecker, Joseph R. (2)
Exposito-Alonso, Moi ... (2)
Farlow, Ashley (2)
Fitz, Joffrey (2)
Gan, Xiangchao (2)
Grimm, Dominik G. (2)
visa färre...
Lärosäte
Uppsala universitet (16)
Lunds universitet (15)
Karolinska Institutet (11)
Stockholms universitet (6)
Göteborgs universitet (3)
Örebro universitet (3)
visa fler...
Sveriges Lantbruksuniversitet (3)
Mittuniversitetet (2)
Kungliga Tekniska Högskolan (1)
Malmö universitet (1)
Chalmers tekniska högskola (1)
Karlstads universitet (1)
Högskolan Dalarna (1)
visa färre...
Språk
Engelska (50)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (24)
Medicin och hälsovetenskap (18)
Lantbruksvetenskap (3)
Teknik (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy