SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kavvalos Mavroudis) srt2:(2019)"

Search: WFRF:(Kavvalos Mavroudis) > (2019)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kavvalos, Mavroudis, et al. (author)
  • A Modelling Approach of Variable Geometry for Low Pressure Ratio Fans
  • 2019
  • In: International Symposium on Air Breathing Engines, ISABE 2019, Canberra, Australia, 23 - 27 September 2019 Paper No. ISABE-2019-24382.
  • Conference paper (peer-reviewed)abstract
    • This paper presents the development and application of a modelling approach of variable geometry conceptsfor low pressure ratio fans; namely Variable Area Nozzle and Variable Pitch Fan. An enhanced approachfor Outlet Guide Vane pressure loss predictions and an aerothermodynamic analysis of variable pitchconcept are developed and integrated into a multi-disciplinary conceptual engine design framework. Astreamline curvature algorithm is deployed for the derivation of the off-design fan performance map,alleviating scaling issues from higher pressure ratio fan designs. Correction deltas are derived through thevariable pitch analysis for calculating the re-shaped off-design fan performance map. The aforementionedvariable geometry concepts are evaluated in terms of surge margin at engine and aircraft level for a lowpressure ratio aft-fan of a hybrid-electric configuration. Performance assessments carried out suggest thata +8° closing of fan blade cascades leads to a 33% surge margin improvement (with reference being thesurge margin without variable geometry) compared to a 25% improvement achieved by +20% opening thenozzle area at end of runway take-off conditions. Although weight and complexity implications of variablegeometry are not considered, the integrated modelling approach is shown to be able to assess and comparesuch novel engine technologies for low pressure ratio fans in terms of operability.
  •  
2.
  • Kavvalos, Mavroudis, et al. (author)
  • Compressor Characteristics for Transient and Part-load Performance Simulation
  • 2019
  • In: Proceedings of the ASME Turbo Expo, American Society of Mechanical Engineers (ASME), 2019. - : American Society of Mechanical Engineers (ASME). - 9780791858608
  • Conference paper (peer-reviewed)abstract
    • Compressor performance tests are mainly focused on the typical range of operation, resulting in limited knowledge of compressor behavior in the low-speed region. The main target of this work comprises the generation of compressor characteristics at low part-load by giving particular insight into the physical aspect of this operating condition. It is necessary for running transient and part-load performance simulation and can be considered as the first crucial step toward an optimal engine starting schedule. Modelling the low part-load operating regime requires accurate component performance maps extended to the low-speed area, where engine starting and altitude relight occur. In this work, a robust methodology for generating compressor maps in the low part-load operating regime is developed. Compressor geometry and typical operation range compressor map are required as inputs. Two different modelling processes are incorporated within this methodology. Extrapolation based on the principle of similarity laws with modified law exponents constitutes the first modelling process, which seems inaccurate when predicting compressor performance at fixed-rotor conditions. Interpolation based on the fixed-rotor characteristic constitutes the second modelling process, which can be either linear or adaptive. The adaptive interpolation scheme was developed by the authors and generates low-speed characteristics using the same allocation trend as the one obtained from given performance data. It is observed that performance data points of each β-line follow an exponential trend in mass flow differences while increasing rotational speed, with a calculated average relativized Root Mean Square (RMS) error of less than 5%. Adapting the same trend in mass flow to the low-speed region, a compressor performance map with continuous exponential trend in all characteristics (for part- and full-load conditions) can be achieved. Implementing the developed methodology on the High Pressure Compressor (HPC) of the Energy Efficient Engine (E3) project is also presented, showcasing its applicability and the merit of it being incorporated into any conventional performance prediction tool. Furthermore, a sensitivity analysis for input variables, namely compressor exit effective area and pressure loss model coefficients is carried out, demonstrating the significant impact of the former on the shape of the low part-load characteristics. Generation of compressor characteristics at low-speeds with this methodology can be viewed as an enabler for running credible transient starting simulation and transient diagnostics, thereby defining an optimal starting schedule, applicable to both power generation and aerospace industry.
  •  
3.
  • Papagianni, Andromachi, et al. (author)
  • Conceptual Design of a Hybrid Gas Turbine - Solid Oxide Fuel Cell System for Civil Aviation
  • 2019
  • Conference paper (peer-reviewed)abstract
    • A conceptual design of a hybrid Gas Turbine - Solid Oxide Fuel Cell (SOFC) system is presented for civil aviation applications. The system operates using hydrogen as fuel, for the aircraft’s propulsion, while at the same time produces electrical energy in the fuel cell. Hydrogen is produced during flight by reformation of methane. The motivation of the study is to investigate hydrogen’s use for aviation purposes, so the hybrid system’s operation characteristics need to be examined. A configuration is designed, where a SOFC and the burner is modeled as one and simulated, in a modern multidisciplinary programming environment, in order to analyze the thermodynamic characteristics of the hybrid system. The fuel cell sets into motion when the aircraft reaches top of climb. During operation, liquefied natural gas is converted to hydrogen in the fuel cell and part of it is used to produce electrical energy while the rest for combustion. To determine the efficiency of the system, its performance was simulated using two scenarios, one for longhaul flights and one for short-haul flights. Comparing the results, for long-haul flights, the hybrid system presents a reduction in fuel consumption and an increase in thermal efficiency. For flights of a short range, the existing conditions in the fuel cell inlet were found to be prohibitive for it’s operation and the use of the hybrid system ineffective. For the system’s efficiency, the larger the pressure in the SOFC’s inlet the better. However, SOFC’s pressure limits restrict the pressure range and the cell’s use only during flight. Concluding, according to the study’s results, the hybrid system can operate in flight conditions, making the use of hydrogen in civil aviation possible. As a result, a 12% and 35% benefit is achieved, in fuel saving and thermal efficiency respectively.
  •  
4.
  • Schnell, Rainer, et al. (author)
  • Assessment of a Turbo‐Electric Aircraft Configuration with Aft‐Propulsion Using Boundary Layer Ingestion
  • 2019
  • In: Aerospace. - Zurich, Switzerland : MDPI AG. - 2226-4310. ; 6:12
  • Journal article (peer-reviewed)abstract
    • In this paper, a turbo‐electric propulsion system was analyzed, and its performance was assessed. The aircraft considered here was a single‐aisle, medium‐range configuration targeting a capacity of 150 Pax. The propulsion concept comprised two boosted geared turbofan engines mounted under‐wing. Those main engines were supported by an electrically driven aft‐propulsor contributing to the thrust generation and by taking advantage of ingesting the boundary layer of the fuselage for potentially higher levels of propulsive efficiency and allowing for the improved operation of the main engines. The performance assessment as carried out in the context of this paper involved different levels: Firstly, based on the reference aircraft and the detailed description of its major components, the engine performance model for both main engines, as well as for the electrically driven aft‐propulsor was set up. The methodology, as introduced, has already been applied in the context of hybrid‐electric propulsion and allowed for the aforementioned aircraft sizing, as well as the subsequent gas turbine multi‐point synthesis (simulation). A geared turbofan architecture with 2035 technology assumptions was considered for the main engine configuration. The present trade study focused on the design and performance analysis of the aft‐propulsor and how it affected the performance of the main engines, due to the electric power generation. In order to allow for a more accurate description of the performance of this particular module, the enhanced streamline curvature method with an underlying and pre‐optimized profile database was used to design a propulsor tailored to meet the requirements of the aft propulsor as derived from the cycle synthesis and overall aircraft specification; existing design expertise for novel and highly integrated propulsors could be taken advantage of herein. The resulting performance characteristics from the streamline curvature method were then fed back to the engine performance model in a closely coupled approach in order to have a more accurate description of the module behavior. This direct coupling allowed for enhanced sensitivity studies, monitoring different top‐level parameters, such as the thrust/power split between the main engines and the aft propulsor. As a result, different propulsor specifications and fan designs with optimal performance characteristics were achieved, which in return affected the performance of all subsystems considered. 
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view