SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kazejev Jaroslav) "

Sökning: WFRF:(Kazejev Jaroslav)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kamae, Tuneyoshi, et al. (författare)
  • PoGOLite - A high sensitivity balloon-borne soft gamma-ray polarimeter
  • 2008
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 30:2, s. 72-84
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe a new balloon-borne instrument (PoGOLite) capable of detecting 10% polarisation from 200 mCrab point-like sources between 25 and 80 keV in one 6-h flight. Polarisation measurements in the soft gamma-ray band are expected to provide a powerful probe into high energy emission mechanisms as well as the distribution of magnetic fields, radiation fields and interstellar matter. Synchrotron radiation, inverse Compton scattering and propagation through high magnetic fields are likely to produce high degrees of polarisation in the energy band of the instrument. We demonstrate, through tests at accelerators, with radioactive sources and through computer simulations, that PoGOLite will be able to detect degrees of polarisation as predicted by models for several classes of high energy sources. At present, only exploratory polarisation measurements have been carried out in the soft gamma-ray band. Reduction of the large background produced by cosmic-ray particles while securing a large effective area has been the greatest challenge. PoGOLite uses Compton scattering and photo-absorption in an array of 217 well-type phoswich detector cells made of plastic and BGO scintillators surrounded by a BGO anticoincidence shield and a thick polyethylene neutron shield. The narrow Held of view (FWHM = 1.25 msr, 2.0 deg x 2.0 deg) obtained with detector cells and the use of thick background shields warrant a large effective area for polarisation measurements (similar to 228 cm(2) at E = 40 keV) without sacrificing the signal-to-noise ratio. Simulation studies for an atmospheric overburden of 3-4 g/cm(2) indicate that neutrons and gamma-rays entering the PDC assembly through the shields are dominant backgrounds. Off-line event selection based on recorded phototube waveforms and Compton kinematics reduce the background to that expected for a similar to 100 mCrab source between 25 and 50 keV. A 6-h observation of the Crab pulsar will differentiate between the Polar Cap/Slot Gap, Outer Gap, and Caustic models with greater than 5 sigma significance; and also cleanly identify the Compton reflection component in the Cygnus X-1 hard state. Long-duration flights will measure the dependence of the polarisation across the cyclotron absorption line in Hercules X-1. A scaled-down instrument will be flown as a pathfinder mission from the north of Sweden in 2010. The first science flight is planned to take place shortly thereafter. 
  •  
2.
  • Pearce, Mark, et al. (författare)
  • PoGOLite : A balloon-borne soft gamma-ray polarimeter
  • 2007
  • Ingår i: Proceedings of the 30th International Cosmic Ray Conference, ICRC 2007. - : Universidad Nacional Autonoma de Mexico. ; , s. 479-482
  • Konferensbidrag (refereegranskat)abstract
    • Polarized gamma-rays are expected from a wide variety of sources including rotationpowered pulsars, accreting black holes and neutron stars, and jet-dominated active galaxies. Polarization measurements provide a powerful probe of the gamma-ray emission mechanism and the distribution of magnetic and radiation fields around the source. No measurements have been performed in the soft gamma-ray band where non-thermal processes are expected to produce high degrees of polarization. The PoGOLite experiment applies well-type phoswich detector technology to polarization measurements in the 25 - 80 keV energy range. The instrument uses Compton scattering and photoabsorption in an array of 217 phoswich detector cells made of plastic and BGO scintillators, and surrounded by active BGO shields. A prototype of the flight instrument has been tested with polarized gammarays and background generated with radioactive sources. The test results and computer simulations confirm that the instrument can detect 10% polarization of a 200 mCrab source in one 6 hour balloon observation. In flight, targets are constrained to within better than 5% of the field-of-view (~5 degrees squared) in order to maximize the effective detection area during observations. The pointing direction on the sky is determined by an attitude control system comprising star trackers, differential GPS receiver system, gyroscopes, accelerometers and magnetometers which provide correction signals to a reaction wheel and torque motor system. Additionally, the entire polarimeter assembly rotates around its viewing axis to minimize systematic bias during observations. Flights are foreseen to start in 2009- 2010 and will target northern sky sources including the Crab pulsar/nebula, Cygnus X-1, and Hercules X-1. These observations will provide valuable information about the pulsar emission mechanism, the geometry around the black hole, and photon transportation in the strongly magnetized neutron star surface, respectively. Future goals include a long duration balloon flight from the Esrange facility in Northern Sweden to Canada.
  •  
3.
  • Tanaka, T., et al. (författare)
  • Data acquisition system for the PoGOLite astronomical hard X-ray polarimeter
  • 2007
  • Ingår i: Nuclear Science Symposium Conference Record, 2007. - 9781424409228 ; , s. 445-449, s. 445-449
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The PoGOLite is a new balloon-borne instrument to measure the polarization of hard X-rays/soft gamma-rays in the 25-80 keV energy range for the first time. In order to detect the polarization, PoGOLite measures the azimuthal angle asymmetry of Compton scattering and the subsequent photo-absorption in an array of detectors. This array consists of 217 well-type phoswich detector cells (PDCs) surrounded by a side anti-coincidence shield (SAS) composed of 54 segments of BGO crystals. At balloon altitude, the intensity of backgrounds due to cosmic-ray charged particles, atmospheric gamma-rays and neutrons is extremely high, typically a few hundred Hz per unit. Hence the data acquisition (DAQ) system of PoGOLite is required to handle more than 270 signals simultaneously, and detect weak signals from astrophysical objects (100mCrab, 1.5 cs(-1) in 25-80 keV) under such a severe environment. We have developed a new DAQ system consisting of front-end electronics, waveform digitizer, Field Programmable Gate Array (FPGA) and a microprocessor. In this system, all output signals of PDC / SAS are fed into individual charge-sensitive amplifier and then digitized to 12 bit accuracy at 24 MSa/s by pipelined analog to digital converters. A DAQ board for the PDC records waveforms which will be examined in an off-line analysis to distinguish signals from the background events and measure the energy spectrum and polarization of targets. A board for the SAS records hit pattern to be used for background rejection. It also continuously records a pulse-height analysis (PHA) histogram to monitor incident background flux. These basic functions of the DAQ system were verified in a series of beam tests.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy