SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Keller Martin 1985) srt2:(2012)"

Sökning: WFRF:(Keller Martin 1985) > (2012)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Azimi, Golnar, 1985, et al. (författare)
  • Experimental evaluation and modeling of steam gasification and hydrogen inhibition in Chemical-Looping Combustion with solid fuel
  • 2012
  • Ingår i: International Journal of Greenhouse Gas Control. - : Elsevier BV. - 1750-5836. ; 11, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • A Chemical-Looping Combustion (CLC) system is composed of two fluidized bed reactors, an air reactor and a fuel reactor. Oxygen is transferred from the air to the fuel by solid oxygen carrier particles circulating between these two reactors. By this arrangement, the N2 from the air is kept separated from the fuel gases as a part of the process and an almost pure stream of CO2 is obtained from the fuel reactor.This work investigates and models the influence of the steam and hydrogen concentration in the fuel reactor on the rate of solid fuel conversion in Chemical-Looping Combustion. Two kinds of fuel were examined, Swedish wood char and El Cerrejon bituminous coal (Colombian coal). Four different bed materials have been used in the reactor, ilmenite, nickel and oxide scales as an oxygen carrier and quartz sand for gasification experiments. The temperature was 970 °C for all experiments. Different fractions of steam and hydrogen were added to the fluidizing stream. Additionally, gasification experiments of fuel particles pretreated in mixtures of H2 and N2 were performed in order to determine the reversibility of the observed hydrogen inhibition.The results show that the best models for describing the behavior of steam gasification and fuel conversion in Chemical-Looping Combustion for a Swedish wood char and the El Cerrejon coal is the oxygen exchange model. For both fuels, it can be seen that higher steam concentration increases the rate of char conversion and, higher hydrogen concentration decreases the rate as a result of hydrogen inhibition. No irreversible hydrogen inhibition could be observed.
  •  
2.
  • Arjmand, Mehdi, 1986, et al. (författare)
  • Oxygen Release and Oxidation Rates of MgAl2O4-Supported CuO Oxygen Carrier for Chemical-Looping Combustion with Oxygen Uncoupling (CLOU)
  • 2012
  • Ingår i: Energy & Fuels. - : American Chemical Society (ACS). - 1520-5029 .- 0887-0624. ; 26:11, s. 6528-6539
  • Tidskriftsartikel (refereegranskat)abstract
    • The chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU) processes are novel solutions for efficient combustion with inherent separation of carbon dioxide. These processes use a metal oxide as an oxygen carrier to transfer oxygen from an air reactor to a fuel reactor, where the fuel reacts with the solid oxygen carrier. When solid fuel is used in CLC, the char must be gasified by, e.g., steam to form H2 and CO, that can be subsequently oxidized to H2O and CO2 by the oxygen carrier. In the case of CLOU, the oxygen carrier releases oxygen gas in the fuel reactor. This enables a high rate of conversion of char from solid fuels, because it eliminates the need for the gasification step needed in normal CLC with solid fuels. In this work, the rate of oxygen release and oxidation of an oxygen carrier consisting of CuO supported by MgAl2O4 (40/60 wt %) for the CLOU process is investigated. The oxygen carrier was produced by freeze-granulation, calcined at 950 °C, and sieved to a size range of 125–180 μm. The reaction rates were obtained in a laboratory-scale fluidized-bed reactor in the temperature range of 850–900 °C, under alternating reducing and oxidizing conditions. The rate of oxygen release was obtained using devolatilized wood char as the fuel in N2 fluidization. Care was taken to obtain reliable measurements not affected by the availability of the fuel and temperature increase in the bed during combustion of the fuel with the released oxygen from the carrier. The Avrami–Erofeev mechanism was used to model the rates of oxygen release and the values of ko and Eapp were estimated to be 2.5 × 105 s–1 and 139.3 kJ mol–1, respectively. The rates of Cu2O oxidation were investigated in a flow of 5% O2 at the inlet of the reactor. However, it was observed that the oxidation rate is limited by the oxygen supply, indicating rapid conversion of the oxygen carrier. From the obtained reaction rates, the minimum total amount of the investigated oxygen carrier needed in the air and the fuel reactor is estimated to be between 69–139 kg MWth–1.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy