SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kessler Benedikt M.) srt2:(2015-2019)"

Sökning: WFRF:(Kessler Benedikt M.) > (2015-2019)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adam, Julie, et al. (författare)
  • Fumarate Hydratase Deletion in Pancreatic β Cells Leads to Progressive Diabetes
  • 2017
  • Ingår i: Cell Reports. - : Elsevier BV. - 2211-1247. ; 20:13, s. 3135-3148
  • Tidskriftsartikel (refereegranskat)abstract
    • We explored the role of the Krebs cycle enzyme fumarate hydratase (FH) in glucose-stimulated insulin secretion (GSIS). Mice lacking Fh1 in pancreatic β cells (Fh1βKO mice) appear normal for 6–8 weeks but then develop progressive glucose intolerance and diabetes. Glucose tolerance is rescued by expression of mitochondrial or cytosolic FH but not by deletion of Hif1α or Nrf2. Progressive hyperglycemia in Fh1βKO mice led to dysregulated metabolism in β cells, a decrease in glucose-induced ATP production, electrical activity, cytoplasmic [Ca2+]i elevation, and GSIS. Fh1 loss resulted in elevated intracellular fumarate, promoting succination of critical cysteines in GAPDH, GMPR, and PARK 7/DJ-1 and cytoplasmic acidification. Intracellular fumarate levels were increased in islets exposed to high glucose and in islets from human donors with type 2 diabetes (T2D). The impaired GSIS in islets from diabetic Fh1βKO mice was ameliorated after culture under normoglycemic conditions. These studies highlight the role of FH and dysregulated mitochondrial metabolism in T2D. Adam et al. have shown that progressive diabetes develops if fumarate hydratase is deleted in mouse pancreatic β cells. Such β cells exhibit elevated fumarate and protein succination and show progressively reduced ATP production and insulin secretion. The depleted insulin response to glucose recovers when diabetic islets are cultured in reduced glucose.
  •  
2.
  •  
3.
  • Iglesias-Gato, Diego, et al. (författare)
  • OTUB1 de-ubiquitinating enzyme promotes prostate cancer cell invasion in vitro and tumorigenesis in vivo
  • 2015
  • Ingår i: Molecular Cancer. - : BioMed Central (BMC). - 1476-4598. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Background:Ubiquitination is a highly dynamic and reversible process with a central role in cell homeostasis. Deregulation of several deubiquitinating enzymes has been linked to tumor development but their specific role in prostate cancer progression remains unexplored.Methods:RNAi screening was used to investigate the role of the ovarian tumor proteases (OTU) family of deubiquitinating enzymes on the proliferation and invasion capacity of prostate cancer cells. RhoA activity was measured in relation with OTUB1 effects on prostate cancer cell invasion. Tumor xenograft mouse model with stable OTUB1 knockdown was used to investigate OTUB1 influence in tumor growth.Results:Our RNAi screening identified OTUB1 as an important regulator of prostate cancer cell invasion through the modulation of RhoA activation. The effect of OTUB1 on RhoA activation is important for androgen-induced repression of p53 expression in prostate cancer cells. In localized prostate cancer tumors OTUB1 was found overexpressed as compared to normal prostatic epithelial cells. Prostate cancer xenografts expressing reduced levels of OTUB1 exhibit reduced tumor growth and reduced metastatic dissemination in vivo.Conclusions:OTUB1 mediates prostate cancer cell invasion through RhoA activation and promotes tumorigenesis in vivo. Our results suggest that drugs targeting the catalytic activity of OTUB1 could potentially be used as therapeutics for metastatic prostate cancer.
  •  
4.
  • Moussa, Ehab, et al. (författare)
  • Proteomic profiling of the brain of mice with experimental cerebral malaria
  • 2018
  • Ingår i: Journal of Proteomics. - : Elsevier BV. - 1874-3919 .- 1876-7737. ; 180, s. 61-69
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebral malaria (CM) is a severe neurological complication of malaria infection in both adults and children. In pursuit of effective treatment of CM, clinical studies, postmortem analysis and animal models have been employed to understand the pathology and identify effective interventions. In this study, a shotgun proteomics analysis was conducted to profile the proteomic signature of the brain tissue of mice with experimental cerebral malaria (ECM) in order to further understand the underlying pathology. To identify CM-associated response, proteomic signatures of the brains of C57/Bl6N mice infected with P. berghei ANKA that developed neurological syndrome were compared to those of mice infected with P. berghei NK65 that developed equally high parasite burdens without neurological signs, and to those of non-infected mice. The results show that the CM-associated response in mice that developed neurological signs comprise mainly acute-phase reaction and coagulation cascade activation, and indicate the leakage of plasma proteins into the brain parenchyma. SIGNIFICANCE: Cerebral malaria (CM) remains a major cause of death in children. The majority of these deaths occur in sub-Saharan Africa. Even with adequate access to treatment, mortality remains high and neurological sequelae can be found in up to 20% of survivors. No adjuvant treatment to date has been shown to reduce mortality and the pathophysiology of CM is largely unknown. Experimental cerebral malaria (ECM) is a well-established model that may contribute to identify and test druggable targets. In this study we have identified the disruption of the blood-brain barrier following inflammatory and vascular injury as a mechanism of disease. In this study we report a number of proteins that could be validated as potential biomarkers of ECM. Further studies, will be required to validate the clinical relevance of these biomarkers in human CM.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy