SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Khan Ziyauddin) srt2:(2020)"

Sökning: WFRF:(Khan Ziyauddin) > (2020)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ajjan, Fátima, 1986-, et al. (författare)
  • Doped Conjugated Polymer Enclosing a Redox Polymer : Wiring Polyquinones with Poly(3,4‐Ethylenedioxythiophene)
  • 2020
  • Ingår i: Advanced Energy and Sustainability Research. - : John Wiley & Sons. - 2699-9412. ; 1:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The mass implementation of renewable energies is limited by the absence of efficient and affordable technology to store electrical energy. Thus, the development of new materials is needed to improve the performance of actual devices such as batteries or supercapacitors. Herein, the facile consecutive chemically oxidative polymerization of poly(1-amino-5-chloroanthraquinone) (PACA) and poly(3,4-ethylenedioxythiophene (PEDOT) resulting in a water dispersible material PACA-PEDOT is shown. The water-based slurry made of PACA-PEDOT nanoparticles can be processed as film coated in ambient atmosphere, a critical feature for scaling up the electrode manufacturing. The novel redox polymer electrode is a nanocomposite that withstands rapid charging (16 A g−1) and delivers high power (5000 W kg−1). At lower current density its storage capacity is high (198 mAh g−1) and displays improved cycling stability (60% after 5000 cycles). Its great electrochemical performance results from the combination of the redox reversibility of the quinone groups in PACA that allows a high amount of charge storage via Faradaic reactions and the high electronic conductivity of PEDOT to access to the redox-active sites. These promising results demonstrate the potential of PACA-PEDOT to make easily organic electrodes from a water-coating process, without toxic metals, and operating in non-flammable aqueous electrolyte for large scale pseudocapacitors. 
  •  
2.
  • Khan, Ziyauddin, et al. (författare)
  • Can Hybrid Na-Air Batteries Outperform Nonaqueous Na-O-2 Batteries?
  • 2020
  • Ingår i: Advanced Science. - : Wiley-VCH Verlagsgesellschaft. - 2198-3844. ; 7:5
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years, there has been an upsurge in the study of novel and alternative energy storage devices beyond lithium-based systems due to the exponential increase in price of lithium. Sodium (Na) metal-based batteries can be a possible alternative to lithium-based batteries due to the similar electrochemical voltage of Na and Li together with the thousand times higher natural abundance of Na compared to Li. Though two different kinds of Na-O-2 batteries have been studied specifically based on electrolytes until now, very recently, a hybrid Na-air cell has shown distinctive advantage over nonaqueous cell systems. Hybrid Na-air batteries provide a fundamental advantage due to the formation of highly soluble discharge product (sodium hydroxide) which leads to low overpotentials for charge and discharge processes, high electrical energy efficiency, and good cyclic stability. Herein, the current status and challenges associated with hybrid Na-air batteries are reported. Also, a brief description of nonaqueous Na-O-2 batteries and its close competition with hybrid Na-air batteries are provided.
  •  
3.
  • Shtepliuk, Ivan, et al. (författare)
  • Manipulation of epitaxial graphene towards novel properties and applications
  • 2020
  • Ingår i: MATERIALS TODAY-PROCEEDINGS. - : ELSEVIER. - 2214-7853. ; , s. 37-45
  • Konferensbidrag (refereegranskat)abstract
    • The integration of epitaxial graphene on 4H-SiC with different metals may allow tunability of electronic and optical properties of graphene, enabling novel high-performance devices. Here we present a Raman spectroscopy study on epitaxial graphene decorated with electrodeposited Pb and Li adatoms and with magnetron sputtered 5 nm-thick Ag nano-island films. We find that the presence of metals on the epitaxial graphene surface generates defects and induces n-type doping, which is evidenced by the observation of the defect related Raman modes (namely D, D and D + G) and systematic red-shift of the main characteristic modes of graphene. In-depth statistical analysis of the Raman data before and after metal deposition complemented by density functional theory (DFT) calculations allowed to link the interaction strength between the three selected metals and graphene with the metal-induced changes in the vibrational/electronic properties of graphene. Large-area uniform electron doping of epitaxial graphene and surface-enhanced Raman scattering (SERS) effect are reached by room temperature deposition of Ag nano-island films. Very promising results have been obtained from graphene subjected to electrochemical intercalation by Li, which can serve as prerequisites of the construction of Li batteries. The strong interaction between Li or Pb with graphene implies the possibility to exploit the epitaxial graphene as an efficient material for energy storage or for heavy metal sensing, while predominant van der Waals interaction between Ag and graphene favors the formation of extremely thin silver coatings towards two-dimensional metal systems. The present results give better understanding of the nature of epitaxial graphene response to metal deposition and can be useful to design high-performance energy storage devices, optical sensors and heavy metal detection systems. (C) 2019 Elsevier Ltd. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy