SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Khossossi Nabil) srt2:(2021)"

Sökning: WFRF:(Khossossi Nabil) > (2021)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Haman, Zakaryae, et al. (författare)
  • Computational identification of efficient 2D Aluminium chalcogenides monolayers for optoelectronics and photocatalysts applications
  • 2021
  • Ingår i: Applied Surface Science. - : Elsevier BV. - 0169-4332 .- 1873-5584. ; 556
  • Tidskriftsartikel (refereegranskat)abstract
    • The massive consumption of traditional fossil fuel like oil, coal and natural gas has led to serious environmental issues, which drove the search for cleaner renewable energy sources. One such option is photocatalytic water splitting that has attracted much attention as a viable process for the large scale production of hydrogen as a renewable fuel. Within this perspective, we methodically studied the structural, optoelectronic, and photocatalytic properties of two-dimensional aluminum monochalcogenide monolayers with the chemical formula AlX (X = O, S, Se, and Te) based on the framework of Density Functional Theory (DFT). All considered structures are full relaxed and their thermodynamic stabilities are confirmed by computing the phonon spectrum and Ab Initio Molecular Dynamics (AIMD) simulations. The electronic characteristics are also performed on the basis of both exchange correlation functional GGA-PBE and HSE06 in order to obtain the accurate electronic band gap. According to our calculations, all the four monolayers posses indirect band gaps ranging between 1.937 and 2.46 eV. Furthermore, based on desirable electronic band gaps, the optical performance features were further explored including complex refractive index, absorption coefficient and energy loss function by means of the complex dielectric function. It is found that all the four materials present a high absorption coefficient in the visible and Ultra-Violet regions. Finally, the band edge positions of our monolayers straddle the reduction potential of H2 and the oxidation potential H2O. Also, it was found that the Gibbs free energy of 2D AlO monolayer is 0.02 eV at certain applied external electric field and very close to ideal catalysts which suggest that the AlO monolayer is better candidate for hydrogen production. Our findings demonstrate that AlX monolayers are suitable materials for optoelectronics and hydrogen production via photocatalytic water splitting.
  •  
2.
  • Khossossi, Nabil, et al. (författare)
  • High-Specific-Capacity and High-Performing Post-Lithium-Ion Battery Anode over 2D Black Arsenic Phosphorus
  • 2021
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 4:8, s. 7900-7910
  • Tidskriftsartikel (refereegranskat)abstract
    • Nowadays, secondary batteries based on sodium (Na), potassium (K), and magnesium (Mg) stimulate curiosity as eventually high-availability, nontoxic, and eco-friendly alternatives of lithium-ion batteries (LIBs). Against this background, a spate of studies has been carried out over the past few years on anode materials suitable for post-lithium-ion battery (PLIBs), in particular sodium-, potassium- and magnesium-ion batteries. Here, we have consistently studied the efficiency of a 2D alpha-phase arsenic phosphorus (alpha-AsP) as anodes through density functional theory (DFT) basin-hopping Monte Carlo algorithm (BHMC) and ab initio molecular dynamics (AIMD) calculations. Our findings show that alpha-AsP is an optimal anode material with very high stabilities, high binding strength, intrinsic metallic characteristic after (Na/K/Mg) adsorption, theoretical specific capacity, and ultralow ion diffusion barriers. The ultralow energy barriers are found to be 0.066 eV (Na), 0.043 eV (K), and 0.058 eV (Mg), inferior to that of the widely investigated MXene materials. During the charging process, a wide (Na+/K+/Mg2+) concentration storage from which a high specific capacity of 759.24/506.16/253.08 mAh/g for Na/K/Mg ions was achieved with average operating voltages of 0.84, 0.93, and 0.52 V, respectively. The above results provide valuable insights for the experimental setup of outstanding anode material for post-Li-ion battery.
  •  
3.
  • Khossossi, Nabil, et al. (författare)
  • Thermodynamics and kinetics of 2D g-GeC monolayer as an anode materials for Li/Na-ion batteries
  • 2021
  • Ingår i: Journal of Power Sources. - : Elsevier B.V.. - 0378-7753 .- 1873-2755. ; 485
  • Tidskriftsartikel (refereegranskat)abstract
    • Development of high capacity anode materials is one of the essential strategies for next-generation high-performance Li/Na-ion batteries. Rational design, using density functional theory, can expedite the discovery of these anode materials. Here, we propose a new anode material, germanium carbide, g-GeC, for Li/Na-ion batteries. Our results show that g-GeC possesses both benefits of the high stability of graphene and the strong interaction between Li/Na and germanene. The single-layer germanium carbide, g-GeC, can be lithiated/sodiated on both sides yielding Li2GeC and Na2GeC with a storage capacity as high as 633 mA h/g. Besides germagraphene's 2D honeycomb structure, fast charge transfer, and high (Li/Na)-ion diffusion and negligible volume change further enhance the anode performance. These findings provide valuable insights into the electronic characteristics of newly predicted 2D g-GeC nanomaterial as a promising anode for (Li/Na)-ion batteries.
  •  
4.
  • Kibbou, M., et al. (författare)
  • Cs2InGaX6 (X=Cl, Br, or I) : Emergent Inorganic Halide Double Perovskites with enhanced optoelectronic characteristics
  • 2021
  • Ingår i: Current applied physics. - : Elsevier BV. - 1567-1739 .- 1878-1675. ; 21, s. 50-57
  • Tidskriftsartikel (refereegranskat)abstract
    • During the last decade, Inorganic Halide Double Perovskite materials have attracted widespread interest as a promising eco-friendly and non-toxic alternative to lead based hybrid halide organic–inorganic perovskites materials, with outstanding Stability, Structural and electronic properties. In this study, First-Principles density functional theory (DFT) calculations were performed on the structural, stability, electronic and optical properties of the transition metal-based double perovskites materials Cs2InGaX6 (X = Cl, Br, or I). Our results reveal that all these materials exhibit excellent thermodynamic and structural stability owing to their negative formation energies and Goldsmith's factors. It is also observed that Cs2InGaCl6, Cs2InGaBr6, and Cs2InGaI6 materials exhibit band gaps calculated by different functional (GGA-PBE and TB-mpj) in visible-range between 0.89 and 3.24 eV. Furthermore, the computed optical properties reveal strong absorption in UV, visible, and IR range with high optical conductivity and low reflectivity. These obtained results predict that the three transition metal-based double perovskites materials carries promising application in nano-electronic and optoelectronic device applications and can be considered as photovoltaic absorber materials.
  •  
5.
  • Luft Cardoso, Günther, et al. (författare)
  • Lithium-functionalized boron phosphide nanotubes (BPNTs) as an efficient hydrogen storage carrier
  • 2021
  • Ingår i: International journal of hydrogen energy. - : Elsevier. - 0360-3199 .- 1879-3487. ; 46:39, s. 20586-20593
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work we have carried out extensive Density Functional Theory (DFT) and ab-initio Molecular Dynamics (AIMD) simulations to study the structural and electronic properties, thermal stability, and the adsorption/desorption processes of hydrogen H2 molecules on Lithium (Li) functionalized one-dimensional boron phosphide nanotubes (BPNTs), for possible use as materials of H2-storage media. Our results show that Li atoms can be adsorbed on the hollow sites of (7,7)-BPNT with binding energy ranging from 1.69 eV, for one Li, to 1.65 eV/Li for 14 Li atoms adsorbed on (7,7)-BPNT. These large energies of Li prevent the formation of clusters on the nanotube sidewall. The investigation of the electronic behavior showed that (7.7)-BPNT semiconductor turns metallic upon the Li-adsorption. Furthermore, the average binding energy of H2-molecules adsorbed on nLi@BPNT(mH2) systems (with n = 1, 2, 4, 6, 8, 14 and m = 1, 2, 3, 4, with m the number of H2 for each Li) lies within a range of 0.13–0.20 eV/H2 which is compatible to the required range for adsorption/desorption of H2-molecules at room conditions. A H2-storage gravimetric capacity up to 4.63% was found for 14Li@BPNT(4H2) system. In addition, AIMD simulation strongly indicates that given adequate monitoring of the temperature, the charge/release process of H2-molecules can be controlled. Our findings suggest that Li-functionalized (7,7) boron phosphide nanotubes can provide a valuable underlying material for H2-storage technologies and therefore must certainly be the subject of further experimental exploration.
  •  
6.
  • Singh, Deobrat, et al. (författare)
  • Harnessing the unique properties of MXenes for advanced rechargeable batteries
  • 2021
  • Ingår i: JPhys Energy. - : IOP Publishing. - 2515-7655. ; 3:1
  • Forskningsöversikt (refereegranskat)abstract
    • In recent years, two-dimensional MXenes have been emerged as potential electrode materials for rechargeable batteries due to their unique properties such as exceptional safety, significant interlayer spacing, environmental flexibility, large surface area, high electrical conductivity, and excellent thermal stability. This review examined all of the recent advances in the field of MXenes and their composites (hybrid structures), which are found to be useful for the electrochemical applications of advanced rechargeable batteries. The main focus of this review is on metal-ion batteries and lithium-sulfur (Li-S) batteries. It is intended to show that the combination of recent improvements in the synthesis and characterization, greater control of the interlayer distance, and new MXene composites, together serve as an emerging and potential way for energy storage applications.
  •  
7.
  • Singh, Deobrat, et al. (författare)
  • Modulation of 2D GaS/BTe vdW heterostructure as an efficient HER catalyst under external electric field influence
  • 2021
  • Ingår i: Catalysis Today. - : Elsevier BV. - 0920-5861 .- 1873-4308. ; 189, s. 189-195
  • Tidskriftsartikel (refereegranskat)abstract
    • Modeling the 2D Van der Waals (vdW) heterostructure photocatalysts is an effective way to take advantage of solar energy and suppressing the fast recombination rate of photo-generated charge carriers. In the present work, we have systematically investigated the electronic, optical and photocatalytic properties of the GaS/BTe vdW heterostructure under an applied external electric field using first-principles calculations. Our results reveal that the GaS/BTe vdW heterostructure has an indirect band gap of 1.06/1.59 eV with PBE/HSE06 functional without electric field. The results also imply that electrons are likely to transfer from GaS to BTe monolayer due to the deeper potential of BTe monolayer. The GaS/BTe vdW system forms a type-II band alignment and established a large electric field at the interface, controlling to effective separation of the electron–hole pairs. Also, the transverse external electric considerably changes the band gap and transform from type-II to type-I and type-III band alignments. The GaS/BTe vdW heterostructure, also enhanced the optical absorption as compared to pristine GaS and BTe monolayer. Furthermore, the (−)ve electric field significantly increases the optical absorption spectrum in infrared (IR) to visible region, while the (+)ve electric field enhances the optical absorption coefficients in visible to ultraviolet (UV) region. The external transverse electric field enhances the hydrogen evolution reaction (HER) activity on the 2D vdW heterostructure. These obtained results predict that the 2D GaS/BTe vdW heterostructures carry potential applications to enhancing the photocatalytic performance under visible light irradiation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy