SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Khotyaintsev Yuri V.) srt2:(2010-2014)"

Sökning: WFRF:(Khotyaintsev Yuri V.) > (2010-2014)

  • Resultat 1-10 av 37
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Matsui, H., et al. (författare)
  • Characteristics of storm time electric fields in the inner magnetosphere derived from Cluster data
  • 2010
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 115, s. A11215-
  • Tidskriftsartikel (refereegranskat)abstract
    • Storm-time electric fields in the inner magnetosphere measured by Cluster are reported in this study. First, we show two events around the time when Dst index is at a minimum. The electric field possibly related to subauroral ion drifts and/or undershielding is measured inside the inner edge of the electron plasma sheet in the eveningside. For the second event observed in the nightside, the electric field is partly related to dipolarization and is considered as inductive. An electric field without coincident magnetic signatures is also observed. Spatial coherence of the electric field is not large when we check multispacecraft data. It is inferred that the electric field in the magnetotail penetrates inside the region 1 current, while it is not clear about the electric field within the region 2 current from our data. Then superposed epoch analyses using 71 storms are performed. Electric fields at R = 3.5-6R(E) and less than 25 degrees of magnetic latitudes are enhanced around the minimum Dst at all magnetic local times. Electric fields during the recovery phase decay on a time scale shorter than that of Dst index, which could be interpreted in terms of the relation between electric field and ring current during that storm phase. AC electric fields are generally larger than DC electric fields, indicating that the former component might play some role in accelerating ring current particles. These results will be useful to update our empirical electric field model.
  •  
2.
  • Matsui, H., et al. (författare)
  • Multi-spacecraft observations of small-scale fluctuations in density and fields in plasmaspheric plumes
  • 2012
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 30:3, s. 623-637
  • Tidskriftsartikel (refereegranskat)abstract
    • In this event study, small-scale fluctuations in plasmaspheric plumes with time scales of similar to 10 s to minutes in the spacecraft frame are examined. In one event, plasmaspheric plumes are observed by Cluster, while IMAGE measured density enhancement at a similar location. Fluctuations in density exist in plumes as detected by Cluster and are accompanied by fluctuations in magnetic fields and electric fields. Magnetic fluctuations are transverse and along the direction of the plumes. The E/B ratio is smaller than the Alfv,n velocity. Another similar event is briefly presented. We then consider physical properties of the fluctuations. Alfv,n mode modulated by the feedback instability is one possibility, although non-local generation is likely. It is hard to show that the fluctuations represent a fast mode. Interchange motion is possible due to the consistency between measurements and expectations. The energy source could be a pressure or density gradient in plasmaspheric plumes. When more events are accumulated so that statistical analysis becomes feasible, this type of study will be useful to understand the time evolution of plumes.
  •  
3.
  • Matsui, H., et al. (författare)
  • Revision of empirical electric field modeling in the inner magnetosphere using Cluster data
  • 2013
  • Ingår i: Journal of Geophysical Research-Space Physics. - : American Geophysical Union (AGU). - 2169-9380. ; 118:7, s. 4119-4134
  • Tidskriftsartikel (refereegranskat)abstract
    • Using Cluster data from the Electron Drift (EDI) and the Electric Field and Wave (EFW) instruments, we revise our empirically-based, inner-magnetospheric electric field (UNH-IMEF) model at 22.662 mV/m; K-p<1, 1K(p)<2, 2K(p)<3, 3K(p)<4, 4K(p)<5, and K(p)4(+). Patterns consist of one set of data and processing for smaller activities, and another for higher activities. As activity increases, the skewed potential contour related to the partial ring current appears on the nightside. With the revised analysis, we find that the skewed potential contours get clearer and potential contours get denser on the nightside and morningside. Since the fluctuating components are not negligible, standard deviations from the modeled values are included in the model. In this study, we perform validation of the derived model more extensively. We find experimentally that the skewed contours are located close to the last closed equipotential, consistent with previous theories. This gives physical context to our model and serves as one validation effort. As another validation effort, the derived results are compared with other models/measurements. From these comparisons, we conclude that our model has some clear advantages over the others.
  •  
4.
  • Yearby, K. H., et al. (författare)
  • Ducted propagation of chorus waves : Cluster observations
  • 2011
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 29:9, s. 1629-1634
  • Tidskriftsartikel (refereegranskat)abstract
    • Ducted propagation of whistler waves in the terrestrial magnetosphere-ionosphere system was discussed and studied long before the first in-situ spacecraft measurements. While a number of implicit examples of the existence of ducted propagation have been found, direct observation of ducts has been hampered by the low sampling rates of measurements of the plasma density. The present paper is based on Cluster observations of chorus waves. The ability to use measurements of the spacecraft potential as a proxy for high time resolution electron density measurements is exploited to identify a number of cases when increased chorus wave power, observed within the radiation belts, is observed simultaneously with density enchantments. It is argued that the observation of ducted propagation of chorus implies modification of numerical models for plasma-wave interactions within the radiation belts.
  •  
5.
  • Fu, H. S., et al. (författare)
  • First observation of rising-tone magnetosonic waves
  • 2014
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 41:21, s. 7419-7426
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetosonic (MS) waves are linearly polarized emissions confined near the magnetic equator with wave normal angle near 90 degrees and frequency below the lower hybrid frequency. Such waves, also termed equatorial noise, were traditionally known to be "temporally continuous" in their time-frequency spectrogram. Here we show for the first time that MS waves actually have discrete wave elements with rising-tone features in their spectrogram. The frequency sweep rate of MS waves, similar to 1 Hz/s, is between that of chorus and electromagnetic ion cyclotron (EMIC) waves. For the two events we analyzed, MS waves occur outside the plasmapause and cannot penetrate into the plasmasphere; their power is smaller than that of chorus. We suggest that the rising-tone feature of MS waves is a consequence of nonlinear wave-particle interaction, as is the case with chorus and EMIC waves.
  •  
6.
  • Fu, H. S., et al. (författare)
  • Whistler-mode waves inside flux pileup region : Structured or unstructured?
  • 2014
  • Ingår i: Journal of Geophysical Research - Space Physics. - : Blackwell Publishing. - 2169-9380 .- 2169-9402. ; 119:11, s. 9089-9100
  • Tidskriftsartikel (refereegranskat)abstract
    • During reconnection, a flux pileup region (FPR) is formed behind a dipolarization front in an outflow jet. Inside the FPR, the magnetic field magnitude and Bz component increase and the whistler-mode waves are observed frequently. As the FPR convects toward the Earth during substorms, it is obstructed by the dipolar geomagnetic field to form a near-Earth FPR. Unlike the structureless emissions inside the tail FPR, we find that the whistler-mode waves inside the near-Earth FPR can exhibit a discrete structure similar to chorus. Both upper band and lower band chorus are observed, with the upper band having a larger propagation angle (and smaller wave amplitude) than the lower band. Most chorus elements we observed are rising-tone type, but some are falling-tone type. We notice that the rising-tone chorus can evolve into falling-tone chorus within <3s. One of the factors that may explain why the waves are unstructured inside the tail FPR but become discrete inside the near-Earth FPR is the spatial inhomogeneity of magnetic field: we find that such inhomogeneity is small inside the near-Earth FPR but large inside the tail FPR.
  •  
7.
  • Laitinen, T. V., et al. (författare)
  • Local influence of magnetosheath plasma beta fluctuations on magnetopause reconnection
  • 2010
  • Ingår i: Annales Geophysicae. - : Copernicus Publications. - 0992-7689 .- 1432-0576. ; 28:5, s. 1053-1063
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations from two subsolar Cluster magnetopause crossings under southward interplanetary magnetic field and strong mirror mode fluctuations in the magnetosheath. In both events the reconnection outflow jets show strong variations on the timescale of one minute. We show that at least some of the recorded variations are truly temporal, not spatial. On the same timescale, mirror mode fluctuations appear as strong magnetic fluctuations in the magnetosheath next to the magnetopause. This suggests that mirror modes can cause the variations either through modulation of continuous reconnection or through triggering of bursty reconnection. Using a theoretical scaling law for asymmetric reconnection we show that modulation of reconnection at a single x-line can explain the observations of the first event. The second event cannot be explained by a single modulated x-line: there the evidence points to patchy and bursty reconnection.
  •  
8.
  • Wang, Rongsheng, et al. (författare)
  • Asymmetry in the current sheet and secondary magnetic flux ropes during guide field magnetic reconnection
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117, s. A07223-
  • Tidskriftsartikel (refereegranskat)abstract
    • A magnetic reconnection event with a moderate guide field encountered by Cluster in the near-Earth tail on 28 August 2002 is reported. The guide field points dawnward during this event. The quadrupolar structure of the Hall magnetic field within the ion diffusion region is distorted toward the northern hemisphere in the earthward part while toward the southern hemisphere tailward part of X-line. Observations of current density and electron pitch angle distribution indicate that the distorted quadrupolar structure is formed due to a deformed Hall electron current system. Cluster crossed the ion diffusion region from south to north earthward of the X-line. An electron density cavity is confirmed in the northern separatrix layer while a thin current layer (TCL) is measured in the southern separatrix layer. The TCL is formed due to electrons injected into the X-line along the magnetic field. These observations are different from simulation results where the cavity is produced associated with inflow electrons along the southern separatrix while the strong current sheet appears with the outflow electron beam along the northern separatrix. The energy of the inflowing electron in the separatrix layer could extend up to 10 keV. Energetic electron fluxes up to 50 keV have a clear peak in the TCL. The length of the separatrix layer is estimated to be at least 65 c/omega(pi). These observations suggest that electrons could be pre-accelerated before they are ejected into the X-line region along the separatrix. Multiple secondary flux ropes moving earthward are observed within the diffusion region. These secondary flux ropes are all identified earthward of the observed TCL. These observations further suggest there are numerous small scale structures within the ion diffusion region.
  •  
9.
  • Agapitov, Oleksiy, et al. (författare)
  • A statistical study of the propagation characteristics of whistler waves observed by Cluster
  • 2011
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 38, s. L20103-
  • Tidskriftsartikel (refereegranskat)abstract
    • VLF waves play a crucial role in the dynamics of radiation belts, and are responsible for the loss and the acceleration of energetic electrons. Modeling wave-particle interactions requires the best possible knowledge for how wave energy and wave-normal directions are distributed in L-shells and for the magnetic latitudes of different magnetic activity conditions. In this work, we performed a statistical study for VLF emissions using a whistler frequency range for nine years (2001-2009) of Cluster measurements. We utilized data from the STAFF-SA experiment, which spans the frequency range from 8.8 Hz to 3.56 kHz. We show that the wave energy distribution has two maxima around L similar to 4.5 = 6 and L similar to 2, and that wave-normals are directed approximately along the magnetic field in the vicinity of the geomagnetic equator. The distribution changes with magnetic latitude, and so that at latitudes of similar to 30 degrees, wave-normals become nearly perpendicular to the magnetic field. The observed angular distribution is significantly different from Gaussian and the width of the distribution increases with latitude. Since the resonance condition for wave-particle interactions depends on the wave normal orientation, our results indicate that, due to the observed change in the wave-normal direction with latitude, the most efficient particle diffusion due to wave-particle interaction should occur in a limited region surrounding the geomagnetic equator.
  •  
10.
  • Agapitov, Oleksiy, et al. (författare)
  • Statistics of whistler mode waves in the outer radiation belt : Cluster STAFF-SA measurements
  • 2013
  • Ingår i: Journal of Geophysical Research-Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 118:6, s. 3407-3420
  • Tidskriftsartikel (refereegranskat)abstract
    • ELF/VLF waves play a crucial role in the dynamics of the radiation belts and are partly responsible for the main losses and the acceleration of energetic electrons. Modeling wave-particle interactions requires detailed information of wave amplitudes and wave normal distribution over L-shells and over magnetic latitudes for different geomagnetic activity conditions. We performed a statistical study of ELF/VLF emissions using wave measurements in the whistler frequency range for 10years (2001-2010) aboard Cluster spacecraft. We utilized data from the STAFF-SA experiment, which spans the frequency range from 8Hz to 4kHz. We present distributions of wave magnetic and electric field amplitudes and wave normal directions as functions of magnetic latitude, magnetic local time, L-shell, and geomagnetic activity. We show that wave normals are directed approximately along the background magnetic field (with the mean value of the angle between the wave normal and the background magnetic field, about 10 degrees-15 degrees) in the vicinity of the geomagnetic equator. The distribution changes with magnetic latitude: Plasmaspheric hiss normal angles increase with latitude to quasi-perpendicular direction at approximate to 35 degrees-40 degrees where hiss can be reflected; lower band chorus are observed as two wave populations: One population of wave normals tends toward the resonance cone and at latitudes of around 35 degrees-45 degrees wave normals become nearly perpendicular to the magnetic field; the other part remains quasi-parallel at latitudes up to 30 degrees. The observed angular distribution is significantly different from Gaussian, and the width of the distribution increases with latitude. Due to the rapid increase of , the wave mode becomes quasi-electrostatic, and the corresponding electric field increases with latitude and has a maximum near 30 degrees. The magnetic field amplitude of the chorus in the day sector has a minimum at the magnetic equator but increases rapidly with latitude with a local maximum near 12 degrees-15 degrees. The wave magnetic field maximum is observed in the night sector at L>7 during low geomagnetic activity (at L approximate to 5 for K-p>3). Our results confirm the strong dependence of wave amplitude on geomagnetic activity found in earlier studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 37

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy