SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kiens Bente) srt2:(2020-2023)"

Sökning: WFRF:(Kiens Bente) > (2020-2023)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fritzen, Andreas Mæchel, et al. (författare)
  • ApoA-1 improves glucose tolerance by increasing glucose uptake into heart and skeletal muscle independently of AMPKα2
  • 2020
  • Ingår i: Molecular Metabolism. - : Elsevier BV. - 2212-8778. ; 35
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Acute administration of the main protein component of high-density lipoprotein, apolipoprotein A-I (ApoA-1), improves glucose uptake in skeletal muscle. The molecular mechanisms mediating this are not known, but in muscle cell cultures, ApoA-1 failed to increase glucose uptake when infected with a dominant-negative AMP-activated protein kinase (AMPK) virus. We therefore investigated whether AMPK is necessary for ApoA-1-stimulated glucose uptake in intact heart and skeletal muscle in vivo. Methods: The effect of injection with recombinant human ApoA-1 (rApoA-1) on glucose tolerance, glucose-stimulated insulin secretion, and glucose uptake into skeletal and heart muscle with and without block of insulin secretion by injection of epinephrine (0.1 mg/kg) and propranolol (5 mg/kg), were investigated in 8 weeks high-fat diet-fed (60E%) wild-type and AMPKα2 kinase-dead mice in the overnight-fasted state. In addition, the effect of rApoA-1 on glucose uptake in isolated skeletal muscle ex vivo was studied. Results: rApoA-1 lowered plasma glucose concentration by 1.7 mmol/l within 3 h (6.1 vs 4.4 mmol/l; p < 0.001). Three hours after rApoA-1 injection, glucose tolerance during a 40-min glucose tolerance test (GTT) was improved compared to control (area under the curve (AUC) reduced by 45%, p < 0.001). This was accompanied by an increased glucose clearance into skeletal (+110%; p < 0.001) and heart muscle (+100%; p < 0.001) and an increase in glucose-stimulated insulin secretion 20 min after glucose injection (+180%; p < 0.001). When insulin secretion was blocked during a GTT, rApoA-1 still enhanced glucose tolerance (AUC lowered by 20% compared to control; p < 0.001) and increased glucose clearance into skeletal (+50%; p < 0.05) and heart muscle (+270%; p < 0.001). These improvements occurred to a similar extent in both wild-type and AMPKα2 kinase-dead mice and thus independently of AMPKα2 activity in skeletal- and heart muscle. Interestingly, rApoA-1 failed to increase glucose uptake in isolated skeletal muscles ex vivo. Conclusions: In conclusion, ApoA-1 stimulates in vivo glucose disposal into skeletal and heart muscle independently of AMPKα2. The observation that ApoA-1 fails to increase glucose uptake in isolated muscle ex vivo suggests that additional systemic effects are required.
  •  
2.
  • Säll, Johanna, et al. (författare)
  • Salt-inducible kinases are required for glucose uptake and insulin signaling in human adipocytes
  • 2023
  • Ingår i: Obesity. - 1930-739X. ; 31:10, s. 2515-2529
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Salt-inducible kinase 2 (SIK2) is abundantly expressed in adipocytes and downregulated in adipose tissue from individuals with obesity or insulin resistance. The main aims of this work were to investigate the involvement of SIKs in the regulation of glucose uptake in primary mature human adipocytes and to identify mechanisms underlying this regulation.METHODS: Primary mature adipocytes were isolated from human, rat, or mouse adipose tissue and treated with pan-SIK inhibitors. Adipocytes isolated from wild type, ob/ob, and SIK2 knockout mice were also used. Glucose uptake was examined by glucose tracer assay. The insulin signaling pathway was monitored by Western blotting, co-immunoprecipitation, and total internal reflection fluorescence microscopy.RESULTS: This study demonstrates that SIK2 is downregulated in obese ob/ob mice and that SIK activity is required for intact glucose uptake in primary human and mouse adipocytes. The underlying mechanism involves direct effects on the insulin signaling pathway, likely at the level of phosphatidylinositol (3,4,5)-trisphosphate (PIP3) generation or breakdown. Moreover, lack of SIK2 alone is sufficient to attenuate glucose uptake in mouse adipocytes.CONCLUSIONS: SIK2 is required for insulin action in human adipocytes, and the mechanism includes direct effects on the insulin signaling pathway.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy