SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kiviranta Ilkka) srt2:(2005-2009)"

Sökning: WFRF:(Kiviranta Ilkka) > (2005-2009)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Pulkkinen, Hertta, et al. (författare)
  • Cellulose sponge as a scaffold for cartilage tissue engineering.
  • 2006
  • Ingår i: Bio-medical materials and engineering. - : IOS Press. - 0959-2989 .- 1878-3619. ; 16:4 Suppl, s. S29-S35
  • Tidskriftsartikel (refereegranskat)abstract
    • One goal of functional tissue engineering is to manufacture scaffolds infiltrated with chondrocytes which are suitable for transplantation into the lesion areas of articular cartilage. Various research strategies are used to fabricate cartilage transplants which would have the correct phenotype, contain enough extracellular matrix components, and have structural and biomechanical properties equivalent to normal articular cartilage. We have investigated the suitability of viscose cellulose sponges as a scaffold for cartilage tissue engineering. The sponges were tested alone, or with recombinant human type II collagen cross-linked inside the material. Scanning electron microscopy and confocal microscopy were used to study the structure of the scaffold during four weeks of cultivation. Cellulose and cellulose/recombinant type II collagen sponges were biocompatible for at least four weeks in cultivation, and gradual filling of the scaffold was observed. However, the constructs remained soft during the observation period, and were devoid of extracellular matrix composition typical for normal articular cartilage.
  •  
3.
  • Pulkkinen, Hertta, et al. (författare)
  • Recombinant human type II collagen as a material for cartilage tissue engineering.
  • 2008
  • Ingår i: International Journal of Artificial Organs. - : Wichtig Editore Srl. - 0391-3988 .- 1724-6040. ; 31:11, s. 960-969
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: Collagen type II is the major component of cartilage and would be an optimal scaffold material for reconstruction of injured cartilage tissue. In this study, the feasibility of recombinant human type II collagen gel as a 3-dimensional culture system for bovine chondrocytes was evaluated in vitro.METHODS: Bovine chondrocytes (4x106 cells) were seeded within collagen gels and cultivated for up to 4 weeks. The gels were investigated with confocal microscopy, histology, and biochemical assays.RESULTS: Confocal microscopy revealed that the cells maintained their viability during the entire cultivation period. The chondrocytes were evenly distributed inside the gels, and the number of cells and the amount of the extracellular matrix increased during cultivation. The chondrocytes maintained their round phenotype during the 4-week cultivation period. The glycosaminoglycan levels of the tissue increased during the experiment. The relative levels of aggrecan and type II collagen mRNA measured with realtime polymerase chain reaction (PCR) showed an increase at 1 week.CONCLUSION: Our results imply that recombinant human type II collagen is a promising biomaterial for cartilage tissue engineering, allowing homogeneous distribution in the gel and biosynthesis of extracellular matrix components.
  •  
4.
  • Pulliainen, Outi, et al. (författare)
  • Poly-L-D-lactic acid scaffold in the repair of porcine knee cartilage lesions.
  • 2007
  • Ingår i: Tissue engineering. - : Mary Ann Liebert Inc. - 1076-3279 .- 1557-8690. ; 13:6, s. 1347-55
  • Tidskriftsartikel (refereegranskat)abstract
    • Articular cartilage injuries cause a major clinical problem because of the negligible repair capacity of cartilage. Autologous chondrocyte transplantation is a surgical method developed to repair cartilage lesions. In the operation, cartilage defect is covered with a periosteal patch and the suspension of cultured autologous chondrocytes is injected into the lesion site. The method can form good repair tissue, but new techniques are needed to make the operation easier and to increase the postoperative biomechanical properties of the repair tissue. In this study, we investigated poly-L,D-lactic acid (PLDLA) scaffolds alone or seeded with autologous chondrocytes in the repair of circular 6-mm cartilage lesions in immature porcine knee joints. Spontaneous repair was used as a reference. Histologic evaluation of the repair tissue showed that spontaneous repair exhibited higher scores than either PLDLA scaffold group (with or without seeded chondrocytes). The scaffold material was most often seen embedded in the subchondral bone underneath the defect area, probably because of the hardness of the PLDLA material. However, some of the cell-seeded and nonseeded scaffolds contained cartilaginous tissue, suggesting that invasion of mesenchymal cells inside nonseeded scaffolds had occurred. Hyaluronan deposited in the scaffold had possibly acted as a chemoattractant for the cell recruitment. In conclusion, the PLDLA scaffold material used in this study was obviously mechanically too hard to be used for cartilage repair in immature animals.
  •  
5.
  • Qu, Cheng-Juan, 1967-, et al. (författare)
  • Human articular cartilage proteoglycans are not undersulfated in osteoarthritis.
  • 2007
  • Ingår i: Connective Tissue Research. - : Informa Healthcare. - 0300-8207 .- 1607-8438. ; 48:1, s. 27-33
  • Tidskriftsartikel (refereegranskat)abstract
    • Chondroitin sulfate is the major constituent of cartilage. Inadequate sulfate availability results in the production of undersulfated proteoglycans. In osteoarthritis, there is a net loss of articular cartilage proteoglycans. Theoretically, it is possible that during the progress of disease undersulfated glycosaminoglycans are synthesized producing proteoglycans with poorer biological properties. In this study, we tested whether in early human osteoarthritic articular cartilage (Mankin's score of 2 and 3) or more advanced disease (Mankin's score over 3), there are proteoglycans that contain a higher relative amount of nonsulfated chondroitin disaccharide isomer in their chondroitin sulfate chains by analyzing the molar ratios of chondroitin sulfate disaccharide isoforms with fluorophore-assisted carbohydrate electrophoresis. Our results indicated that the nonsulfated disaccharide of chondroitin sulfate formed in average only 1-2% of the total chondroitin sulfate. More important, the molar ratio of nonsulfated disaccharide did not appear to be increased in the osteoarthritic articular cartilage. We conclude that undersulfation of articular cartilage proteoglycans is not present in the human osteoarthritic joint.
  •  
6.
  •  
7.
  • Tiitu, Virpi, et al. (författare)
  • Bioreactor improves the growth and viability of chondrocytes in the knitted poly-L,D-lactide scaffold.
  • 2008
  • Ingår i: Biorheology. - : IOS Press. - 0006-355X .- 1878-5034. ; 45:3-4, s. 539-546
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present study bovine chondrocytes were cultured in two different environments (static flasks and bioreactor) in knitted poly-L,D-lactide (PLDLA) scaffolds up to 4 weeks. Chondrocyte viability was assessed by employing cell viability fluorescence markers. The cells were visualized using confocal laser scanning microscopy and scanning electron microscopy. The mechanical properties and uronic acid contents of the scaffolds were tested. Our results showed that cultivation in a bioreactor improved the growth and viability of the chondrocytes in the PLDLA scaffolds. Cells were observed both on and in between the fibrils of scaffold. Furthermore, chondrocytes cultured in the bioreactor, regained their original round phenotypes, whereas those in the static flask culture were flattened in shape. Confocal microscopy revealed that chondrocytes from the bioreactor were attached on both sides of the scaffold and sustained viability better during the culture period. Uronic acid contents of the scaffolds, cultured in bioreactor, were significantly higher than in those cultured in static flasks for 4 weeks. In summary, our data suggests that the bioreactor is superior over the static flask culture when culturing chondrocytes in knitted PLDLA scaffold.
  •  
8.
  • Vasara, Anna I., et al. (författare)
  • Arthroscopic cartilage indentation and cartilage lesions of anterior cruciate ligament-deficient knees
  • 2005
  • Ingår i: AMERICAN JOURNAL OF SPORTS MEDICINE. - : SAGE Publications. - 0363-5465 .- 1552-3365. ; 33:3, s. 408-414
  • Tidskriftsartikel (refereegranskat)abstract
    • The anterior cruciate ligament-deficient knee is prone to osteoarthritis and meniscus lesions. Very little, however, is known about the biomechanical properties of articular cartilage in anterior cruciate ligament-deficient knees. Purpose To evaluate biomechanical and macroscopical cartilage changes in the knee joint with respect to the time after anterior cruciate ligament rupture. Hypothesis Chronic anterior cruciate ligament deficiency induces cartilage softening. Study Design Cross-sectional study; Level of evidence, 3. Methods Cartilage stiffness of 50 patients undergoing anterior cruciate ligament reconstructive surgery because of symptomatic knee instability after chronic anterior cruciate ligament rupture was measured with an arthroscopic indenter device, and the number and size of cartilage lesions were evaluated. Results The cartilage stiffness did not correlate with time from trauma to surgery (r = 0.002, P =. 99), but the number of cartilage lesions in the knee increased when the time from the initial trauma to reconstructive surgery increased (r = 0.356, P =. 011). Indentation values measured on healthy-looking cartilage on damaged joint surfaces were lower than the values measured on healthy joint surfaces (P <. 01 on lateral femoral condyle and on tibial plateaus). Conclusions The number of cartilage lesions increases with increased time after initial trauma. The arthroscopic indenter device is able to detect cartilage softening as the early mechanical sign of degradation not yet visible to the eye.
  •  
9.
  • Vasara, Anna I, et al. (författare)
  • Immature porcine knee cartilage lesions show good healing with or without autologous chondrocyte transplantation.
  • 2006
  • Ingår i: Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society. - : Elsevier BV. - 1063-4584 .- 1522-9653. ; 14:10, s. 1066-74
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: The purpose of this study was to find out how deep chondral lesions heal in growing animals spontaneously and after autologous chondrocyte transplantation. METHODS: A 6mm deep chondral lesion was created in the knee joints of 57 immature pigs and repaired with autologous chondrocyte transplantation covered with periosteum or muscle fascia, with periosteum only, or left untreated. After 3 and 12 months, the repair tissue was evaluated with International Cartilage Repair Society (ICRS) macroscopic grading, modified O'Driscoll histological scoring, and staining for collagen type II and hyaluronan, and with toluidine blue and safranin-O staining for glycosaminoglycans. The repair tissue structure was also examined with quantitative polarized light microscopy and indentation analysis of the cartilage stiffness. RESULTS: The ICRS grading indicated nearly normal repair tissue in 65% (10/17) after the autologous chondrocyte transplantation and 86% (7/8) after no repair at 3 months. At 1 year, the repair tissue was nearly normal in all cases in the spontaneous repair group and in 38% (3/8) in the chondrocyte transplantation group. In most cases, the cartilage repair tissue stained intensely for glycosaminoglycans and collagen type II indicating repair tissue with true constituents of articular cartilage. There was a statistical difference in the total histological scores at 3 months (P=0.028) with the best repair in the spontaneous repair group. A marked subchondral bone reaction, staining with toluidine blue and collagen type II, was seen in 65% of all animals. CONCLUSIONS: The spontaneous repair ability of full thickness cartilage defects of immature pigs is significant and periosteum or autologous chondrocytes do not bring any additional benefits to the repair.
  •  
10.
  • Vasara, Anna I, et al. (författare)
  • Indentation stiffness of repair tissue after autologous chondrocyte transplantation.
  • 2005
  • Ingår i: Clinical orthopaedics and related research. - 0009-921X. ; :433, s. 233-42
  • Tidskriftsartikel (refereegranskat)abstract
    • Our main hypothesis was that indentation stiffness of the repair tissue approaches the values of adjacent cartilage 1 year after autologous chondrocyte transplantation. We also wanted to investigate the differences between osteochondritic lesions and full-thickness lesions. Thirty patients with cartilage lesions were operated on with autologous chondrocyte transplantation. The repair was evaluated arthroscopically, indentation stiffness was measured, and clinical evaluations were done. The stiffness of the repair tissue improved to 62% (mean 2.04 +/- 0.83 N, mean +/- SD) of adjacent cartilage (3.58 +/- 1.04 N). Fifty-three percent of the patients graded their knee as excellent or good and 47% of the patients graded their knee as fair at the followup. In six patients the normalized stiffness was at least 80%, suggesting hyaline-like repair. The indentation stiffness of the osteochondritis dissecans lesion repairs (1.45 +/- 0.46 N; n = 7) was less than that of the nonosteochondritis dissecans lesion repair sites (2.37 +/- 0.72 N; n = 19). Gadolinium-enhanced magnetic resonance imaging of the cartilage (dGEMRIC) during followup of four patients suggested proteoglycan replenishment, although all grafts showed low indentation values. Low stiffness values may indicate incomplete maturation or predominantly fibrous repair. The indentation analysis showed that the repair tissue stiffness could, in some cases, reach the same level as the adjacent cartilage, but there was a large variation among the grafts.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy