SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Klamer Daniel 1976) srt2:(2015-2018)"

Sökning: WFRF:(Klamer Daniel 1976) > (2015-2018)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Finnerty, N., et al. (författare)
  • Increased brain nitric oxide levels following ethanol administration
  • 2015
  • Ingår i: Nitric oxide. - : Elsevier BV. - 1089-8603 .- 1089-8611. ; 47, s. 52-57
  • Tidskriftsartikel (refereegranskat)abstract
    • Nitric oxide is a ubiquitous messenger molecule, which at elevated concentrations has been implicated in the pathogenesis of several neurological disorders. Its role in oxidative stress, attributed in particular to the formation of peroxynitrite, proceeds through its high affinity for the superoxide radical. Alcoholism has recently been associated with the induction of oxidative stress, which is generally defined as a shift in equilibrium between pro-oxidant and anti-oxidant species in the direction of the former. Furthermore, its primary metabolite acetaldehyde, has been extensively associated with oxidative damage related toxic effects following alcohol ingestion. The principal objective of this study was the application of long term in vivo electrochemistry (LIVE) to investigate the effect of ethanol (0.125, 0.5 and 2.0 g kg-1) and acetaldehyde (12.5, 50 and 200 mg kg-1) on NO levels in the nucleus accumbens of freely moving rats. Systemic administrations of ethanol and acetaldehyde resulted in a dose-dependent increases in NO levels, albeit with very differing time courses. Subsequent to this the effect on accumbal NO levels, of subjecting the animal to different drug combinations, was also elucidated. The nitric oxide synthase inhibitor L-NAME (20 mg kg-1) and acetaldehyde sequestering agent D-penicillamine (50 mg kg-1) both attenuated the increase in NO levels following ethanol (1 g kg-1) administration. Conversely, the alcohol dehydrogenase inhibitor 4-methylpyrazole (25 mg kg-1) and catalase inhibitor sodium azide (10 mg kg-1) potentiated the increase in NO levels following ethanol administration. Finally, dual inhibition of aldehyde dehydrogenase and catalase by cyanamide (25 mg kg-1) caused an attenuation of ethanol effects on NO levels. Taken together these data highlight a robust increase in brain NO levels following systemic alcohol administration which is dependent on NO synthase activity and may involve both alcohol- and acetaldehyde-dependent mechanisms. © 2015 Elsevier Inc. All rights reserved.
  •  
2.
  • Waters, Susanna, et al. (författare)
  • Pridopidine: Overview of Pharmacology and Rationale for its Use in Huntington's Disease
  • 2018
  • Ingår i: Journal of Huntingtons Disease. - : IOS Press. - 1879-6397 .- 1879-6400. ; 7:1, s. 1-16
  • Forskningsöversikt (refereegranskat)abstract
    • Despite advances in understanding the pathophysiology of Huntington's disease (HD), there are currently no effective pharmacological agents available to treat core symptoms or to stop or prevent the progression of this hereditary neurodegenerative disorder. Pridopidine, a novel small molecule compound, has demonstrated potential for both symptomatic treatment and disease modifying effects in HD. While pridopidine failed to achieve its primary efficacy outcomes (Modified motor score) in two trials (MermaiHD and HART) there were consistent effects on secondary outcomes (TMS). In the most recent study (PrideHD) pridiopidine did not differ from placebo on TMS, possibly due to a large enduring placebo effect. This review describes the process, based on in vivo systems response profiling, by which pridopidine was discovered and discusses its pharmacological profile, aiming to provide a model for the system-level effects, and a rationale for the use of pridopidine in patients affected by HD. Considering the effects on brain neurochemistry, gene expression and behaviour in vivo, pridopidine displays a unique effect profile. A hallmark feature in the behavioural pharmacology of pridopidine is its state-dependent inhibition or activation of dopamine-dependent psychomotor functions. Such effects are paralleled by strengthening of synaptic connectivity in cortico-striatal pathways suggesting pridopidine has potential to modify phenotypic expression as well as progression of HD. The preclinical pharmacological profile is discussed with respect to the clinical results for pridopidine, and proposals are made for further investigation, including preclinical and clinical studies addressing disease progression and effects at different stages of HD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy