SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Klasson Lisa) srt2:(2015-2019)"

Sökning: WFRF:(Klasson Lisa) > (2015-2019)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baiao, Guilherme Costa, et al. (författare)
  • The effect of Wolbachia on gene expression in Drosophila paulistorum and its implications for symbiont-induced host speciation
  • 2019
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 20
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The Neotropical fruit fly Drosophila paulistorum (Diptera: Drosophilidae) is a species complex in statu nascendi comprising six reproductively isolated semispecies, each harboring mutualistic Wolbachia strains. Although wild type flies of each semispecies are isolated from the others by both pre- and postmating incompatibilities, mating between semispecies and successful offspring development can be achieved once flies are treated with antibiotics to reduce Wolbachia titer. Here we use RNA-seq to study the impact of Wolbachia on D. paulistorum and investigate the hypothesis that the symbiont may play a role in host speciation. For that goal, we analyze samples of heads and abdomens of both sexes of the Amazonian, Centro American and Orinocan semispecies of D. paulistorum.Results: We identify between 175 and 1192 differentially expressed genes associated with a variety of biological processes that respond either globally or according to tissue, sex or condition in the three semispecies. Some of the functions associated with differentially expressed genes are known to be affected by Wolbachia in other species, such as metabolism and immunity, whereas others represent putative novel phenotypes involving muscular functions, pheromone signaling, and visual perception.Conclusions: Our results show that Wolbachia affect a large number of biological functions in D. paulistorum, particularly when present in high titer. We suggest that the significant metabolic impact of the infection on the host may cause several of the other putative and observed phenotypes. We also speculate that the observed differential expression of genes associated with chemical communication and reproduction may be associated with the emergence of pre- and postmating barriers between semispecies, which supports a role for Wolbachia in the speciation of D. paulistorum.
  •  
2.
  • Gottlieb, Yuval, et al. (författare)
  • Distinctive Genome Reduction Rates Revealed by Genomic Analyses of Two Coxiella-Like Endosymbionts in Ticks
  • 2015
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press (OUP). - 1759-6653 .- 1759-6653. ; 7:6, s. 1779-1796
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome reduction is a hallmark of symbiotic genomes, and the rate and patterns of gene loss associated with this process have been investigated in several different symbiotic systems. However, in long-term host-associated coevolving symbiont clades, the genome size differences between strains are normally quite small and hence patterns of large-scale genome reduction can only be inferred from distant relatives. Here we present the complete genome of a Coxiella-like symbiont from Rhipicephalus turanicus ticks (CRt), and compare it with other genomes from the genus Coxiella in order to investigate the process of genome reduction in a genus consisting of intracellular host-associated bacteria with variable genome sizes. The 1.7-Mb CRt genome is larger than the genomes of most obligate mutualists but has a very low protein-coding content (48.5%) and an extremely high number of identifiable pseudogenes, indicating that it is currently undergoing genome reduction. Analysis of encoded functions suggests that CRt is an obligate tick mutualist, as indicated by the possible provisioning of the tick with biotin (B7), riboflavin (B2) and other cofactors, and by the loss of most genes involved in host cell interactions, such as secretion systems. Comparative analyses between CRt and the 2.5 times smaller genome of Coxiella from the lonestar tick Amblyomma americanum (CLEAA) show that many of the same gene functions are lost and suggest that the large size difference might be due to a higher rate of genome evolution in CLEAA generated by the loss of the mismatch repair genes mutSL. Finally, sequence polymorphisms in the CRt population sampled from field collected ticks reveal up to one distinct strain variant per tick, and analyses of mutational patterns within the population suggest that selection might be acting on synonymous sites. The CRt genome is an extreme example of a symbiont genome caught in the act of genome reduction, and the comparison between CLEAA and CRt indicates that losses of particular genes early on in this process can potentially greatly influence the speed of this process.
  •  
3.
  • Hotopp, Julie C. Dunning, et al. (författare)
  • The Complexities and Nuances of Analyzing the Genome of Drosophila ananassae and Its Wolbachia Endosymbiont
  • 2018
  • Ingår i: G3. - : GENETICS SOCIETY AMERICA. - 2160-1836. ; 8:1, s. 373-374
  • Tidskriftsartikel (refereegranskat)abstract
    • In "Retrotransposons Are the Major Contributors to the Expansion of the Drosophila ananassae Muller F Element," Leung et al. (2017) improved contigs attributed to the Muller F element from the original CAF1 assembly, and used them to conclude that most of the sequence expansion of the fourth chromosome of D. ananassae is due to a higher transposon load than previously thought, but is not due to Wolbachia DNA integrations. While we do not disagree with the first conclusion, the authors base their second conclusion on the lack of homology detected between their improved CAF1 genome assembly attributed to D. ananassae and reference Wolbachia genomes. While the consensus CAF1 genome assembly lacks any sequence similarity to the reference genome of the Wolbachia endosymbiont of Drosophila melanogaster (wMel), numerous studies from multiple laboratories provide experimental support for a large lateral/horizontal gene transfer (LGT) of a Wolbachia genome into this D. ananassae line. As such, we strongly suspect that the original whole genome assembly was either constructed after the removal of all Wolbachia reads, or that Wolbachia sequences were directly removed from the contigs in the CAF1 assembly. Hence, Leung et al. (2017) could not have identified the Wolbachia LGT using the CAF1 assembly. This manuscript by Leung et al. (2017) highlights that an assembly of the Wolbachia sequence reads and their mate pairs was erroneously attributed solely to the Wolbachia endosymbiont, albeit before we understood the extent of LGT in D. ananassae. As such, we recommend that the sequences deposited at the National Center for Biotechnology Information (NCBI) under PRJNA13365 should not be attributed to Wolbachia endosymbiont of D. ananassae, but should have their taxonomy reclassified by NCBI as "Unclassified sequences." As our knowledge about genome biology improves, we need to reconsider and reanalyze earlier genomes removing the prejudice introduced from now defunct paradigms.
  •  
4.
  • Kampfraath, A. A., et al. (författare)
  • Genome expansion of an obligate parthenogenesis-associated Wolbachia poses an exception to the symbiont reduction model
  • 2019
  • Ingår i: BMC Genomics. - : BMC. - 1471-2164. ; 20
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Theory predicts that dependency within host-endosymbiont interactions results in endosymbiont genome size reduction. Unexpectedly, the largest Wolbachia genome was found in the obligate, parthenogenesis-associated wFol. In this study, we investigate possible processes underlying this genome expansion by comparing a re-annotated wFol genome to other Wolbachia genomes. In addition, we also search for candidate genes related to parthenogenesis induction (PI).Results: Within wFol, we found five phage WO regions representing 25.4% of the complete genome, few pseudogenized genes, and an expansion of DNA-repair genes in comparison to other Wolbachia. These signs of genome conservation were mirrored in the wFol host, the springtail F. candida, which also had an expanded DNA-repair gene family and many horizontally transferred genes. Across all Wolbachia genomes, there was a strong correlation between gene numbers of Wolbachia strains and their hosts. In order to identify genes with a potential link to PI, we assembled the genome of an additional PI strain, wLcla. Comparisons between four PI Wolbachia, including wFol and wLcla, and fourteen non-PI Wolbachia yielded a small set of potential candidate genes for further investigation.Conclusions: The strong similarities in genome content of wFol and its host, as well as the correlation between host and Wolbachia gene numbers suggest that there may be some form of convergent evolution between endosymbiont and host genomes. If such convergent evolution would be strong enough to overcome the evolutionary forces causing genome reduction, it would enable expanded genomes within long-term obligate endosymbionts.
  •  
5.
  • Klasson, Lisa (författare)
  • The unpredictable road to reduction
  • 2017
  • Ingår i: Nature ecology and evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 1, s. 1062-1063
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
6.
  • Tamarit, Daniel, 1988- (författare)
  • Evolution of symbiotic lineages and the origin of new traits
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis focuses on the genomic study of symbionts of two different groups of hymenopterans: bees and ants. Both groups of insects have major ecological impact, and investigating their microbiomes increases our understanding of their health, diversity and evolution.The study of the bee gut microbiome, including members of Lactobacillus and Bifidobacterium, revealed genomic processes related to the adaptation to the gut environment, such as the expansion of genes for carbohydrate metabolism and the acquisition of genes for interaction with the host. A broader genomic study of these genera demonstrated that some lineages evolve under strong and opposite substitution biases, leading to extreme GC content values. A comparison of codon usage patterns in these groups revealed ongoing shifts of optimal codons.In a separate study we analysed the genomes of several strains of Lactobacillus kunkeei, which inhabits the honey stomach of bees but is not found in their gut. We observed signatures of genome reduction and suggested candidate genes for host-interaction processes. We discovered a novel type of genome architecture where genes for metabolic functions are located in one half of the genome, whereas genes for information processes are located in the other half. This genome organization was also found in other Lactobacillus species, indicating that it was an ancestral feature that has since been retained. We suggest mechanisms and selective forces that may cause the observed organization, and describe processes leading to its loss in several lineages independently.We also studied the genome of a species of Rhizobiales bacteria found in ants. We discuss its metabolic capabilities and suggest scenarios for how it may affect the ants’ lifestyle. This genome contained a region with homology to the Bartonella gene transfer agent (GTA), which is a domesticated bacteriophage used to transfer bacterial DNA between cells. We propose that its unique behaviour as a specialist GTA, preferentially transferring host-interaction factors, originated from a generalist GTA that transferred random segments of chromosomal DNA.These bioinformatic analyses of previously uncharacterized bacterial lineages have increased our understanding of their physiology and evolution and provided answers to old and new questions in fundamental microbiology.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy