SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kleinfelder S.) srt2:(2020-2023)"

Search: WFRF:(Kleinfelder S.) > (2020-2023)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aguilar, J. A., et al. (author)
  • Triboelectric backgrounds to radio-based polar ultra-high energy neutrino (UHEN) experiments
  • 2023
  • In: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 145
  • Journal article (peer-reviewed)abstract
    • In the hopes of observing the highest-energy neutrinos (E> 1 EeV) populating the Universe, both past (RICE, AURA, ANITA) and current (RNO-G, ARIANNA, ARA and TAROGE-M) polar-sited experiments exploit the impulsive radio emission produced by neutrino interactions. In such experiments, rare single event candidates must be unambiguously identified above backgrounds. Background rejection strategies to date primarily target thermal noise fluctuations and also impulsive radio-frequency signals of anthropogenic origin. In this paper, we consider the possibility that 'fake' neutrino signals may also be generated naturally via the `triboelectric effect' This broadly describes any process in which force applied at a boundary layer results in displacement of surface charge, leading to the production of an electrostatic potential difference AV. Wind blowing over granular surfaces such as snow can induce such a potential difference, with subsequent coronal discharge. Discharges over timescales as short as nanoseconds can then lead to radio-frequency emissions at characteristic MHz-GHz frequencies. Using data from various past (RICE, AURA, SATRA, ANITA) and current (RNO G, ARIANNA and ARA) neutrino experiments, we find evidence for such backgrounds, which are generally characterized by: (a) a threshold wind velocity which likely depends on the experimental trigger criteria and layout; for the experiments considered herein, this value is typically O(10 m/s), (b) frequency spectra generally shifted to the low-end of the frequency regime to which current radio experiments are typically sensitive (100-200 MHz), (c) for the strongest background signals, an apparent preference for discharges from above-surface structures, although the presence of more isotropic, lower amplitude triboelectric discharges cannot be excluded.
  •  
2.
  • Anker, A., et al. (author)
  • Improving sensitivity of the ARIANNA detector by rejecting thermal noise with deep learning
  • 2022
  • In: Journal of Instrumentation. - : IOP Publishing. - 1748-0221. ; 17:3
  • Journal article (peer-reviewed)abstract
    • The ARIANNA experiment is an Askaryan detector designed to record radio signals induced by neutrino interactions in the Antarctic ice. Because of the low neutrino flux at high energies (E-nu > 10(16 )eV), the physics output is limited by statistics. Hence, an increase in sensitivity significantly improves the interpretation of data and offers the ability to probe new parameter spaces. The amplitudes of the trigger threshold are limited by the rate of triggering on unavoidable thermal noise fluctuations. We present a real-time thermal noise rejection algorithm that enables the trigger thresholds to be lowered, which increases the sensitivity to neutrinos by up to a factor of two (depending on energy) compared to the current ARIANNA capabilities. A deep learning discriminator, based on a Convolutional Neural Network (CNN), is implemented to identify and remove thermal events in real time. We describe a CNN trained on MC data that runs on the current ARIANNA microcomputer and retains 95% of the neutrino signal at a thermal noise rejection factor of 10(5), compared to a template matching procedure which reaches only 10(2) for the same signal efficiency. Then the results are verified in a lab measurement by feeding in generated neutrino-like signal pulses and thermal noise directly into the ARIANNA data acquisition system. Lastly, the same CNN is used to classify cosmic-rays events to make sure they are not rejected. The network classified 102 out of 104 cosmic-ray events as signal.
  •  
3.
  • Anker, A., et al. (author)
  • Measuring the polarization reconstruction resolution of the ARIANNA neutrino detector with cosmic rays
  • 2022
  • In: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :4
  • Journal article (peer-reviewed)abstract
    • The ARIANNA detector is designed to detect neutrinos with energies above 10(17) eV. Due to the similarities in generated radio signals, cosmic rays are often used as test beams for neutrino detectors. Some ARIANNA detector stations are equipped with antennas capable of detecting air showers. Since the radio emission properties of air showers are well understood, and the polarization of the radio signal can be predicted from the arrival direction, cosmic rays can be used as a proxy to assess the reconstruction capabilities of the ARIANNA neutrino detector. We report on dedicated efforts of reconstructing the polarization of cosmic-ray radio pulses. After correcting for difference in hardware, the two stations used in this study showed similar performance in terms of event rate and agreed with simulation. Subselecting high quality cosmic rays, the polarizations of these cosmic rays were reconstructed with a resolution of 2.5 degrees (68% containment), which agrees with the expected value obtained from simulation. A large fraction of this resolution originates from uncertainties in the predicted polarization because of the contribution of the subdominant Askaryan effect in addition to the dominant geomagnetic emission. Subselecting events with a zenith angle greater than 70 degrees removes most influence of the Askaryan emission, and, with limited statistics, we found the polarization uncertainty is reduced to 1.3 degrees (68% containment).
  •  
4.
  • Anker, A., et al. (author)
  • A search for cosmogenic neutrinos with the ARIANNA test bed using 4.5 years of data
  • 2020
  • In: Journal of Cosmology and Astroparticle Physics. - : IOP PUBLISHING LTD. - 1475-7516. ; :3
  • Journal article (peer-reviewed)abstract
    • The primary mission of the ARIANNA ultra-high energy neutrino telescope is to uncover astrophysical sources of neutrinos with energies greater than 10(16) eV. A pilot array, consisting of seven ARIANNA stations located on the surface of the Ross Ice Shelf in Antarctica, was commissioned in November 2014. We report on the search for astrophysical neutrinos using data collected between November 2014 and February 2019. A straight-forward template matching analysis yielded no neutrino candidates, with a signal efficiency of 79%. We find a 90% confidence upper limit on the diffuse neutrino flux of E-2 Phi = 1.7 x 10(-6) GeV cm(-2) s(-1) sr(-1) for a decade wide logarithmic bin centered at a neutrino energy of 10(18),eV, which is an order of magnitude improvement compared to the previous limit reported by the ARIANNA collaboration. The ARIANNA stations, including purpose built cosmic-ray stations at the Moore's Bay site and demonstrator stations at the South Pole, have operated reliably. Sustained operation at two distinct sites confirms that the flexible and adaptable architecture can be deployed in any deep ice, radio quiet environment. We show that the scientific capabilities, technical innovations, and logistical requirements of ARIANNA are sufficiently well understood to serve as the basis for large area radio-based neutrino telescope with a wide field-of-view.
  •  
5.
  • Anker, A., et al. (author)
  • Probing the angular and polarization reconstruction of the ARIANNA detector at the South Pole
  • 2020
  • In: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 15:9
  • Journal article (peer-reviewed)abstract
    • The sources of ultra-high energy (UHE) cosmic rays, which can have energies up to 10(20) eV, remain a mystery. UHE neutrinos may provide important clues to understanding the nature of cosmic-ray sources. ARIANNA aims to detect UHE neutrinos via radio (Askaryan) emission from particle showers when a neutrino interacts with ice, which is an efficient method for neutrinos with energies between 10(16) eV and 10(20) eV. The ARIANNA radio detectors are located in Antarctic ice just beneath the surface. Neutrino observation requires that radio pulses propagate to the antennas at the surface with minimum distortion by the ice and firn medium. Using the residual hole from the South Pole Ice Core Project, radio pulses were emitted from a transmitter located up to 1.7 km below the snow surface. By measuring these signals with an ARIANNA surface station, the angular and polarization reconstruction abilities are quantified, which are required to measure the direction of the neutrino. After deconvolving the raw signals for the detector response and attenuation from propagation through the ice, the signal pulses show no significant distortion and agree with a reference measurement of the emitter made in an anechoic chamber. Furthermore, the signal pulses reveal no significant birefringence for our tested geometry of mostly vertical ice propagation. The origin of the transmitted radio pulse was measured with an angular resolution of 0.37 degrees indicating that the neutrino direction can be determined with good precision if the polarization of the radio-pulse can be well determined. In the present study we obtained a resolution of the polarization vector of 2.7 degrees. Neither measurement show a significant offset relative to expectation.
  •  
6.
  • Anker, A., et al. (author)
  • Developing new analysis tools for near surface radio-based neutrino detectors
  • 2023
  • In: Journal of Cosmology and Astroparticle Physics. - : Institute of Physics Publishing (IOPP). - 1475-7516. ; :10
  • Journal article (peer-reviewed)abstract
    • The ARIANNA experiment is an Askaryan radio detector designed to measure high-energy neutrino induced cascades within the Antarctic ice. Ultra-high-energy neutrinos above 1016 eV have an extremely low flux, so experimental data captured at trigger level need to be classified correctly to retain as much neutrino signal as possible. We first describe two new physics-based neutrino selection methods, or "cuts", (the updown and dipole cut) that extend the previously published analysis to a specialized ARIANNA station with 8 antenna channels, which is double the number used in the prior analysis. For a standard trigger with a threshold signal to noise ratio at 4.4, the new cuts produce a neutrino efficiency of > 95% per station-year of operation, while rejecting 99.93% of the background (corresponding to 53 remaining experimental background events). When the new cuts are combined with a pre-viously developed cut using neutrino waveform templates, all background is removed at no change of efficiency. In addition, the neutrino efficiency is extrapolated to 1,000 station-years of operation, obtaining 91%. This work then introduces a new selection method (the deep learning cut) to augment the identification of neutrino events by using deep learning meth-ods and compares the efficiency to the physics-based analysis. The deep learning cut gives 99% signal efficiency per station-year of operation while rejecting 99.997% of the background (corresponding to 2 remaining experimental background events), which are subsequently re-moved by the waveform template cut at no significant change in efficiency. The results of the deep learning cut were verified using measured cosmic rays which shows that the simulations do not introduce artifacts with respect to experimental data. The paper demonstrates that the background rejection and signal efficiency of near surface antennas meets the require-ments of a large scale future array, as considered in baseline design of the radio component of IceCube-Gen2.
  •  
7.
  • Wang, Shih-Hao, et al. (author)
  • TAROGE-M : radio antenna array on antarctic high mountain for detecting near-horizontal ultra-high energy air showers
  • 2022
  • In: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :11
  • Journal article (peer-reviewed)abstract
    • The TAROGE-M radio observatory is a self-triggered antenna array on top of the similar to 2700m high Mt. Melbourne in Antarctica, designed to detect impulsive geomagnetic emission from extensive air showers induced by ultra-high energy (UHE) particles beyond 1017 eV, including cosmic rays, Earth-skimming tau neutrinos, and particularly, the "ANITA anomalous events" (AAE) from near and below the horizon. The six AAE discovered by the ANITA experiment have signal features similar to tau neutrinos but that hypothesis is in tension either with the interaction length predicted by Standard Model or with the flux limits set by other experiments. Their origin remains uncertain, requiring more experimental inputs for clarification. The detection concept of TAROGE-M takes advantage of a high altitude with synoptic view toward the horizon as an efficient signal collector, and the radio quietness as well as strong and near vertical geomagnetic field in Antarctica, enhancing the relative radio signal strength. This approach has a low energy threshold, high duty cycle, and is easy to extend for quickly enlarging statistics. Here we report experimental results from the first TAROGEM station deployed in January 2020, corresponding to approximately one month of livetime. The station consists of six receiving antennas operating at 180-450 MHz, and can reconstruct source directions of impulsive events with an angular resolution of similar to 0.3 ffi, calibrated in situ with a drone-borne pulser system. To demonstrate TAROGE-M's ability to detect UHE air showers, a search for cosmic ray signals in 25.3-days of data together with the detection simulation were conducted, resulting in seven identified candidates. The detected events have a mean reconstructed energy of 0.95+0.46 -0.31 EeV and zenith angles ranging from 25 ffi to 82 ffi, with both distributions agreeing with the simulations, indicating an energy threshold at about 0.3 EeV. The estimated cosmic ray flux at that energy is 1.2+0.7 -0.9x10(-16) eV(-1) km(-2) yr(-1) sr(-1), also consistent with results of other experiments. The TAROGE-M sensitivity to AAEs is approximated by the tau neutrino exposure with simulations, which suggests comparable sensitivity as ANITA's at around 1 EeV energy with a few station-years of operation. These first results verified the station design and performance in a polar and high-altitude environment, and are promising for further discovery of tau neutrinos and AAEs after an extension in the near future.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view