SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Klintenberg M.) srt2:(2015-2019)"

Sökning: WFRF:(Klintenberg M.) > (2015-2019)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wilman, H. R., et al. (författare)
  • Genetic studies of abdominal MRI data identify genes regulating hepcidin as major determinants of liver iron concentration
  • 2019
  • Ingår i: Journal of Hepatology. - : Elsevier. - 0168-8278 .- 1600-0641. ; 71:3, s. 594-602
  • Tidskriftsartikel (refereegranskat)abstract
    • Background & Aims: Excess liver iron content is common and is linked to the risk of hepatic and extrahepatic diseases. We aimed to identify genetic variants influencing liver iron content and use genetics to understand its link to other traits and diseases. Methods: First, we performed a genome-wide association study (GWAS) in 8,289 individuals from UK Biobank, whose liver iron level had been quantified by magnetic resonance imaging, before validating our findings in an independent cohort (n = 1,513 from IMI DIRECT). Second, we used Mendelian randomisation to test the causal effects of 25 predominantly metabolic traits on liver iron content. Third, we tested phenome-wide associations between liver iron variants and 770 traits and disease outcomes. Results: We identified 3 independent genetic variants (rs1800562 [C282Y] and rs1799945 [H63D] in HFE and rs855791 [V736A] in TMPRSS6) associated with liver iron content that reached the GWAS significance threshold (p <5 × 10−8). The 2 HFE variants account for ∼85% of all cases of hereditary haemochromatosis. Mendelian randomisation analysis provided evidence that higher central obesity plays a causal role in increased liver iron content. Phenome-wide association analysis demonstrated shared aetiopathogenic mechanisms for elevated liver iron, high blood pressure, cirrhosis, malignancies, neuropsychiatric and rheumatological conditions, while also highlighting inverse associations with anaemias, lipidaemias and ischaemic heart disease. Conclusion: Our study provides genetic evidence that mechanisms underlying higher liver iron content are likely systemic rather than organ specific, that higher central obesity is causally associated with higher liver iron, and that liver iron shares common aetiology with multiple metabolic and non-metabolic diseases. Lay summary: Excess liver iron content is common and is associated with liver diseases and metabolic diseases including diabetes, high blood pressure, and heart disease. We identified 3 genetic variants that are linked to an increased risk of developing higher liver iron content. We show that the same genetic variants are linked to higher risk of many diseases, but they may also be associated with some health advantages. Finally, we use genetic variants associated with waist-to-hip ratio as a tool to show that central obesity is causally associated with increased liver iron content.
  •  
2.
  • Butorin, Sergei, et al. (författare)
  • Effect of Ag Doping on Electronic Structure of Cluster Compounds AgxMo9Se11 (x = 3.4, 3.9)
  • 2018
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 1:8, s. 4032-4039
  • Tidskriftsartikel (refereegranskat)abstract
    • The electronic structure of AgxMo9Se11 as a potential material for thermoelectric applications was studied using high-energy-resolution fluorescence-detection X-ray absorption spectroscopy (HERFD-XAS) and the resonant inelastic X-ray scattering (RIXS) technique. The experiments were supported by first-principle calculations using density functional theory (DFT). The analysis of obtained spectra indicate the presence of subvalent (less than 1+) Ag in AgxMo9Se11. The advanced HERFD-XAS measurements allowed us to resolve the contribution of the electronic states at the Fermi level of AgxMo9Se11 and to monitor its dependence on the x value. A comparison of the experimental data with the results of the DFT calculations suggests the importance of the Ag2-type sites with the shortest Ag–Se distance for affecting the properties of AgxMo9Se11.
  •  
3.
  • Stoller, R. E., et al. (författare)
  • Impact of Short-Range Forces on Defect Production from High Energy Collisions
  • 2016
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 12:6, s. 2871-2879
  • Tidskriftsartikel (refereegranskat)abstract
    • Primary radiation damage formation in solid materials typically involves collisions between atoms that have up to a few hundred keV of kinetic energy. Dining these collisions, the-distance between two colliding atoms can approach 0.05 nm. At such small atomic separations, force fields fitted-to equilibrium properties tend to significantly underestimate the potential-energy-of the colliding dieter. To enable molecular dynamics simulations of high-energy collisions, it is common practice to use a screened Coulomb, force field to describe the interactions and to smoothly join this to the equilibrium force field at a suitable interatomic spacing. However, there is,no accepted standard method for choosing the parameters used in the joining process, and our results prove that defect production is sensitive to how the force field's are linked. A new procedure is presented that involves the use of ab initio calculations to,determine the magnitude and spatial dependence of the pair interactions at intermediate distances, along with systematic criteria for choosing the joining parameters. Results are presented for the case of nickel, which demonstrate the use and validity of the procedure.
  •  
4.
  •  
5.
  • Tamm, A., et al. (författare)
  • Langevin Dynamics with Spatial Correlations as a Model for Electron-Phonon Coupling
  • 2018
  • Ingår i: Physical Review Letters. - : American Physical Society. - 0031-9007 .- 1079-7114. ; 120:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Stochastic Langevin dynamics has been traditionally used as a tool to describe nonequilibrium processes. When utilized in systems with collective modes, traditional Langevin dynamics relaxes all modes indiscriminately, regardless of their wavelength. We propose a generalization of Langevin dynamics that can capture a differential coupling between collective modes and the bath, by introducing spatial correlations in the random forces. This allows modeling the electronic subsystem in a metal as a generalized Langevin bath endowed with a concept of locality, greatly improving the capabilities of the two-temperature model. The specific form proposed here for the spatial correlations produces a physical wave-vector and polarization dependency of the relaxation produced by the electron-phonon coupling in a solid. We show that the resulting model can be used for describing the path to equilibration of ions and electrons and also as a thermostat to sample the equilibrium canonical ensemble. By extension, the family of models presented here can be applied in general to any dense system, solids, alloys, and dense plasmas. As an example, we apply the model to study the nonequilibrium dynamics of an electron-ion two-temperature Ni crystal.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy