SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Klovins Janis) srt2:(2003-2004)"

Sökning: WFRF:(Klovins Janis) > (2003-2004)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Haitina, Tatjana, et al. (författare)
  • Cloning, tissue distribution, pharmacology and three-dimensional modelling of melanocortin receptors 4 and 5 in rainbow trout suggest close evolutionary relationship of these subtypes
  • 2004
  • Ingår i: Biochemical Journal. - 0264-6021 .- 1470-8728. ; 380:2, s. 475-486
  • Tidskriftsartikel (refereegranskat)abstract
    • The rainbow trout (Oncorhynchus mykiss) is one of the most widely used fish species in aquaculture and physiological research. In the present paper, we report the first cloning, 3D (three-dimensional) modelling, pharmacological characterization and tissue distribution of two melanocortin (MC) receptors in rainbow trout. Phylogenetic analysis indicates that these receptors are orthologues of the human MC4 and MC5 receptors. We created 3D molecular models of these rainbow trout receptors and their human counterparts. These models suggest greater divergence between the two human receptors than between their rainbow trout counterparts. The pharmacological analyses demonstrated that ACTH (adrenocorticotropic hormone) had surprisingly high affinity for the rainbow trout MC4 and MC5 receptors, whereas alpha-, beta- and gamma-MSH (melanocyte-stimulating hormone) had lower affinity. In second-messenger studies, the cyclic MSH analogues MTII and SHU9119 acted as potent agonist and antagonist respectively at the rainbow trout MC4 receptor, indicating that these ligands are suitable for physiological studies in rainbow trout. Interestingly, we found that the rainbow trout MC4 receptor has a natural high-affinity binding site for zinc ions (0.5 microM) indicating that zinc may play an evolutionary conserved role at this receptor. Reverse transcription PCR indicates that the rainbow trout receptors are expressed both in peripheral tissues and in the central nervous system, including the telencephalon, optic tectum and hypothalamus. Overall, this analysis indicates that the rainbow trout MC4 and MC5 receptors have more in common than their mammalian counterparts, which may suggest that these two receptors have a closer evolutionary relationship than the other MC receptor subtypes.
  •  
2.
  • Klovins, Janis, et al. (författare)
  • Cloning of two melanocortin (MC) receptors in spiny dogfish : MC3 receptor in cartilaginous fish shows high affinity to ACTH-derived peptides while it has lower preference to gamma-MSH
  • 2004
  • Ingår i: European Journal of Biochemistry. - : Wiley. - 0014-2956 .- 1432-1033. ; 271:21, s. 4320-4331
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the cloning and characterization of two melanocortin receptors (MCRs) from the spiny dogfish (Squalus acanthias) (Sac). Phylogenetic analysis shows that these shark receptors are orthologues of the MC3R and MC5R subtypes, sharing 65% and 70% overall amino acid identity with the human counterparts, respectively. The SacMC3R was expressed and pharmacologically characterized in HEK293 cells. The radioligand binding results show that this receptor has high affinity for adrenocorticotropic hormone (ACTH)-derived peptides while it has comparable affinity for alpha- and beta-melanocyte stimulating hormone (MSH), and slightly lower affinity for gamma-MSH when compared with the human orthologue. ACTH(1-24) has high potency in a second-messenger cAMP assay while alpha- and gamma-MSH had slightly lower potency in cells expressing the SacMC3R. We used receptor-enhanced green fluorescence protein (EGFP) fusion to show the presence of SacMC3R in plasma membrane of Chinese hamster ovary and HEK293 cells but the SacMC5R was retained in intracellular compartments of these cells hindering pharmacological characterization. The anatomical distribution of the receptors were determined using reverse transcription PCR. The results showed that the SacMC3R is expressed in the hypothalamus, brain stem and telencephalon, optic tectum and olfactory bulbs, but not in the cerebellum of the spiny dogfish while the SacMC5R was found only in the same central regions. This report describes the first molecular characterization of a MC3R in fish. The study indicates that many of the important elements of the MC system existed before radiation of gnathostomes, early in vertebrate evolution, at least 450 million years ago.
  •  
3.
  • Klovins, Janis, et al. (författare)
  • The melanocortin system in Fugu: determination of POMC/AGRP/MCR gene repertoire and synteny, as well as pharmacology and anatomical distribution of the MCRs
  • 2004
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 21:3, s. 563-79
  • Tidskriftsartikel (refereegranskat)abstract
    • The G-protein-coupled melanocortin receptors (MCRs) play an important role in a variety of essential functions such as the regulation of pigmentation, energy homeostasis, and steroid production. We performed a comprehensive characterization of the MC system in Fugu (Takifugu rubripes). We show that Fugu has an AGRP gene with high degree of conservation in the C-terminal region in addition to a POMC gene lacking gamma-MSH. The Fugu genome contains single copies of four MCRs, whereas the MC3R is missing. The MC2R and MC5R are found in tandem and remarkably contain one and two introns, respectively. We suggest that these introns were inserted through a reverse splicing mechanism into the DRY motif that is widely conserved through GPCRs. We were able to assemble large blocks around the MCRs in Fugu, showing remarkable synteny with human chromosomes 16 and 18. Detailed pharmacological characterization showed that ACTH had surprisingly high affinity for the Fugu MC1R and MC4R, whereas alpha-MSH had lower affinity. We also showed that the MC2R gene in Fugu codes for an ACTH receptor, which did not respond to alpha-MSH. All the Fugu receptors were able to couple functionally to cAMP production in line with the mammalian orthologs. The anatomical characterization shows that the MC2R is expressed in the brain in addition to the head-kidney, whereas the MC4R and MC5R are found in both brain regions and peripheral tissues. This is the first comprehensive genomic and functional characterization of a GPCR family within the Fugu genome. The study shows that some parts of the MC system are highly conserved through vertebrate evolution, such as regions in POMC coding for ACTH, alpha-MSH, and beta-MSH, the C-terminal region of AGRP, key binding units within the MC1R, MC2R, MC4R, and MC5R, synteny blocks around the MCRs, pharmacological properties of the MC2R, whereas other parts in the system are either missing, such as the MC3R and gamma-MSH, or different as compared to mammals, such as the affinity of ACTH and MSH peptides to MC1R and MC4R and the anatomical expression pattern of the MCRs.
  •  
4.
  • Lagerström, Malin C., et al. (författare)
  • High affinity agonistic metal ion binding sites within the melanocortin 4 receptor illustrate conformational change of transmembrane region 3
  • 2003
  • Ingår i: Journal of Biological Chemistry. - : American Society for Biochemistry and Molecular Biology. - 0021-9258 .- 1083-351X. ; 278:51, s. 51521-51526
  • Tidskriftsartikel (refereegranskat)abstract
    • We created a molecular model of the human melanocortin 4 receptor (MC4R) and introduced a series of His residues into the receptor protein to form metal ion binding sites. We were able to insert micromolar affinity binding sites for zinc between transmembrane region (TM) 2 and TM3 where the metal ion alone was able to activate this peptide binding G-protein-coupled receptor. The exact conformation of the metal ion interactions allowed us to predict the orientation of the helices, and remodeling of the receptor protein indicated that Glu100 and Ile104 in TM2 and Asp122 and Ile125 in TM3 are directed toward a putative area of activation of the receptor. The molecular model suggests that a rotation of TM3 may be important for activation of the MC4R. Previous models of G-protein-coupled receptors have suggested that unlocking of a stabilizing interaction between the DRY motif, in the cytosolic part of TM3, and TM6 is important for the activation process. We suggest that this unlocking process may be facilitated through creation of a new interaction between TM3 and TM2 in the MC4R.
  •  
5.
  • Ringholm, Aneta, et al. (författare)
  • Pharmacological characterization of loss of function mutations of the human melanocortin 1 receptor that are associated with red hair
  • 2004
  • Ingår i: Journal of Investigative Dermatology. - 0022-202X .- 1523-1747. ; 123:5, s. 917-923
  • Tidskriftsartikel (refereegranskat)abstract
    • Variation in skin color is the major host risk factor for melanoma and other forms of skin cancer. Individuals with red hair show an increased ratio of phaeomelanin to eumelanin in both hair and skin. This ratio is regulated by the melanocortin (MC) 1 receptor. There are several common point mutations in the human MC1 receptor that are overrepresented in North European red-heads, and in individuals with pale skin. In order to determine the functional significance of these mutations, we expressed the Asp84Glu, Val92Met, Arg163Gln, and Asp294His variants of the human MC1 receptors in eukaryotic cells and determined their ability to bind alpha-melanocyte stimulating hormone (MSH) peptides and increase intracellular cAMP. The mutants Asp84Glu and Asp294His showed a much lower response to alpha-MSH in cAMP and a slightly impaired ability to bind alpha-MSH, and the Val92Met mutant bound alpha-MSH with 100-fold lower affinity as compared with the wild-type. The Arg163Gln variant, widely found in some Asian populations, reached normal level of cAMP response but had just slightly lower potency for alpha-MSH in binding and second messenger studies. The results provide important pharmacological characterization of common MC1 receptor variants in various world populations.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy