SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Klovins Janis) srt2:(2010-2014)"

Sökning: WFRF:(Klovins Janis) > (2010-2014)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Almén, Markus Sällman, et al. (författare)
  • Genome-wide analysis reveals DNA methylation markers that vary with both age and obesity
  • 2014
  • Ingår i: Gene. - : Elsevier BV. - 0378-1119 .- 1879-0038. ; 548:1, s. 61-67
  • Tidskriftsartikel (refereegranskat)abstract
    • The combination of the obesity epidemic and an aging population presents growing challenges for the healthcare system. Obesity and aging are major risk factors for a diverse number of diseases and it is of importance to understand their interaction and the underlying molecular mechanisms. Herein the authors examined the methylation levels of 27578 CpG sites in 46 samples from adult peripheral blood. The effect of obesity and aging was ascertained with general linear models. More than one hundred probes were correlated to aging, nine of which belonged to the KEGG group map04080. Additionally, 10 CpG sites had diverse methylation profiles in obese and lean individuals, one of which was the telomerase catalytic subunit (TERT). In eight of ten cases the methylation change was reverted between obese and lean individuals. One region proved to be differentially methylated with obesity (LINC00304) independent of age. This study provides evidence that obesity influences age driven epigenetic changes, which provides a molecular link between aging and obesity. This link and the identified markers may prove to be valuable biomarkers for the understanding of the molecular basis of aging, obesity and associated diseases.
  •  
2.
  • Ciganoka, Darja, et al. (författare)
  • Identification of somatostatin receptor type 5 gene polymorphisms associated with acromegaly
  • 2011
  • Ingår i: European Journal of Endocrinology. - 0804-4643 .- 1479-683X. ; 165:4, s. 517-525
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The aim of this study was to characterize the genetic variance of somatostatin receptor 5 (SSTR5) and investigate the possible correlation of such variants with acromegaly risk and different disease characteristics. Design and methods: The SSTR5 gene coding region and 2000 bp upstream region was sequenced in 48 patients with acromegaly and 96 control subjects. Further, three single nucleotide polymorphisms (SNPs) were analyzed in the same group of acromegaly patients and in an additional group of 475 age- and sex-matched controls. Results: In total, 19 SNPs were identified in the SSTR5 gene locus by direct sequencing. Three SNPs (rs34037914, rs169068, and rs642249) were significantly associated with the presence of acromegaly using the initial controls. The allele frequencies were significantly (P<0.01) different between the acromegaly patients and the additional large control group. rs34037914 and rs642249 remained significantly associated with acromegaly after Bonferroni correction and permutation tests (odds ratio (OR) = 3.38; 95% confidence interval (CI), 1.78-6.42; P=0.00016 and OR=2.41; 95% CI, 1.41-4.13; P=0.0014 respectively). Haplotype reconstruction revealed two possible risk haplotypes determined by rs34037914 (633T) and rs642249 (1044A) alleles. Both haplotypes were found in significantly higher frequency in acromegaly patients compared with controls (P=0.001). In addition, the 663T allele was significantly associated with a younger age of acromegaly diagnosis (unstandardized regression coefficient beta=-10.4; P=0.002), increased body mass index (beta=4.1; P=0.004), higher number of adenoma resection (P<0.001) and lack of observable tumor shrinkage after somatostatin analog treatment (P=0.014). Conclusions: Our results demonstrate a previously undetected strong association of two SSTR5 SNPs with acromegaly. The data also suggest a possible involvement of SSTR5 variants in decreased suppression of GH production and increased tumor proliferation.
  •  
3.
  • Fridmanis, Davids, et al. (författare)
  • Identification of domains responsible for specific membrane transport and ligand specificity of the ACTH receptor (MC2R)
  • 2010
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207 .- 1872-8057. ; 321:2, s. 175-183
  • Tidskriftsartikel (refereegranskat)abstract
    • The adrenocorticotropic hormone (ACTH) receptor has highly specific membrane expression that is limited to adrenal cells; in other cell types the polypeptide fails to be transported to the cell surface. Unlike other evolutionarily related members of the melanocortin receptor family (MC1R-MC5R) that recognize different melanocortin peptides, ACTHR (MC2R) binds only ACTH. We used a mutagenesis approach involving systematic construction of chimeric ACTHR/MC4R receptors to identify the domains determining the selectivity of ACTHR membrane transport and ACTH binding. In total 15 chimeric receptors were created by replacement of selected domains of human ACTHR with the corresponding regions of human MC4R. We developed an analytical method to accurately quantify cell-membrane localization of recombinant receptors fused with enhanced green fluorescent protein by confocal fluorescence microscopy. The chimeric receptors were also tested for their ability to bind ACTH (1-24) and the melanocyte-stimulating hormone (MSH) analog, Nle4, DPhe7-alpha-MSH, and to induce a cAMP response. Our results indicate that substitution of the MC4R N-terminal segment with the homologous segment of ACTHR significantly decreased membrane transport. We also identified another signal localized in the third and fourth transmembrane regions as the main determinant of ACTHR intracellular retention. In addition, we found that the fourth and fifth transmembrane domains of the ACTHR are involved in ACTH binding selectivity. We discuss the mechanisms involved in bypassing these arrest signals via an interaction with melanocortin 2 receptor accessory protein (MRAP) and the possible mechanisms that determine the high ligand-binding specificity of ACTHR.
  •  
4.
  • Fridmanis, Davids, et al. (författare)
  • Replacement of short segments within transmembrane domains of MC2R disrupts retention signal
  • 2014
  • Ingår i: Journal of Molecular Endocrinology. - 0952-5041 .- 1479-6813. ; 53:2, s. 201-215
  • Tidskriftsartikel (refereegranskat)abstract
    • The proteolysis of the pro-opiomelanocortin precursor results in the formation of melanocortins (MCs), a group of peptides that share the conserved -H-F-R-W- sequence, which acts as a pharmacophore for five subtypes of MC receptors (MCRs). MC type 2 receptor (MC2R; also known as ACTHR) is the most specialized of all the MCRs. It is predominantly expressed in the adrenal cortex and specifically binds ACTH. Unlike other MCRs, it requires melanocortin receptor accessory protein 1 (MRAP) for formation of active receptor and for its transport to the cell membrane. The molecular mechanisms underlying this specificity remain poorly understood. In this study, we used directed mutagenesis to investigate the role of various short MC2R sequence segments in receptor membrane trafficking and specific activation upon stimulation with ligands. The strategy of the study was to replace two to five amino acid residues within one MC2R segment with the corresponding residues of MC4R. In total, 20 recombinant receptors C-terminally fused to enhanced green fluorescent protein were generated and their membrane trafficking efficiencies and cAMP response upon stimulation with α-MSH and ACTH(1-24) were estimated during their stand-alone expression and coexpression with MRAP. Our results indicate that both the motif that determines the ligand-recognition specificity and the intracellular retention signal are formed by a specific extracellular structure, which is supported by the correct alignment of the transmembrane domains. Our results also indicate that the aromatic-residue-rich segment of the second extracellular loop is involved in the effects mediated by the second ACTH pharmacophore (-K-K-R-R-).
  •  
5.
  • Ignatovica, Vita, et al. (författare)
  • Identification and analysis of functionally important amino acids in human purinergic 12 receptor using a Saccharomyces cerevisiae expression system
  • 2012
  • Ingår i: The FEBS Journal. - : Wiley. - 1742-464X .- 1742-4658. ; 279:1, s. 180-191
  • Tidskriftsartikel (refereegranskat)abstract
    • The purinergic 12 receptor (P2Y12) is a major drug target for anticoagulant therapies, but little is known about the regions involved in ligand binding and activation of this receptor. We generated four randomized P2Y12 libraries and investigated their ligand binding characteristics. P2Y12 was expressed in a Saccharomyces cerevisiae model system. Four libraries were generated with randomized amino acids at positions 181, 256, 265 and 280. Mutant variants were screened for functional activity in yeast using the natural P2Y12 ligand ADP. Activation results were investigated using quantitative structure-activity relationship (QSAR) models and ligand-receptor docking. We screened four positions in P2Y12 for functional activity by substitution with amino acids with diverse physiochemical properties. This analysis revealed that positions E181, R256 and R265 alter the functional activity of P2Y12 in a specific manner. QSAR models for E181 and R256 mutant libraries strongly supported the experimental data. All substitutions of amino acid K280 were completely inactive, highlighting the crucial role of this residue in P2Y12 function. Ligand-receptor docking revealed that K280 is likely to be a key element in the ligand-binding pocket of P2Y12. The results of this study demonstrate that positions 181, 256, 265 and 280 of P2Y12 are important for the functional integrity of the receptor. Moreover, K280 appears to be a crucial feature of the P2Y12 ligand-binding pocket. These results are important for rational design of novel antiplatelet agents.
  •  
6.
  • Ignatovica, Vita, et al. (författare)
  • Single nucleotide polymorphisms of the purinergic 1 receptor are not associated with myocardial infarction in a Latvian population
  • 2012
  • Ingår i: Molecular Biology Reports. - : Springer Science and Business Media LLC. - 0301-4851 .- 1573-4978. ; 39:2, s. 1917-1925
  • Tidskriftsartikel (refereegranskat)abstract
    • The purinergic 1 receptor (P2RY1) has been implicated in development of heart disease and in individual pharmacodynamic response to anticoagulant therapies. However, the association of polymorphisms in the P2RY1 gene with myocardial infarction (MI), and its associated conditions, has yet to be reported in the literature. We evaluated seven known SNPs in P2RY1 for association with MI in a Latvian population. Seven independent parameters that are related to MI [body mass index (BMI), type 2 diabetes (T2D), angina pectoris, hypertension, hyperlipidemia, atrial fibrillation and heart failure] were investigated. No significant association with MI was observed for any of the polymorphisms. Those SNPs for which the P value was close to significance were located in coding or promoter regions. Intriguingly, carriers of the minor allele in the P2RY1 gene locus showed a tendency towards higher onset age for MI, suggesting a possible protective effect of these SNPs against MI or their contribution in progression as opposed to onset. Finally, a linkage disequilibrium (LD) plot was generated for these polymorphisms in the Latvian population. The results of this study suggest that the role of P2RY1 in individuals from Latvian population is likely to be principally involved in platelet aggregation and thromboembolic diseases, and not as a significant contributing factor to the global metabolic syndrome.
  •  
7.
  • Kalnina, Ineta, et al. (författare)
  • Polymorphisms in FTO and near TMEM18 associate with type 2 diabetes and predispose to younger age at diagnosis of diabetes
  • 2013
  • Ingår i: Gene. - : Elsevier BV. - 0378-1119 .- 1879-0038. ; 527:2, s. 462-468
  • Tidskriftsartikel (refereegranskat)abstract
    • Variations in the FTO gene and near the TMEM18 gene are risk factors for common form of obesity, but have also been linked with type 2 diabetes (T2D). Our aim was to investigate the contribution of these variants to risk of T2D in a population in Latvia. Four single nucleotide polymorphisms (SNP) in the first and fourth intronic regions of FTO and one close to TMEM18 were genotyped in 987 patients with T2D and 1080 controls selected from the Latvian Genome Data Base (LGDB). We confirmed association of SNPs in the first intron (rs11642015, rs62048402 and rs9939609) of FTO and rs7561317 representing the TMEM18 locus with T2D. Association between SNP in FTO and T2D remained significant after correction for body mass index (BMI). The rs57103849 located in the fourth intron of FTO and rs7561317 in TMEM18 showed BMI independent association with younger age at diagnosis of T2D. Our results add to the evidence that BMI related variants in and near FTO and TMEM18 may increase the risk for T2D not only through secondary effects of obesity. The influence of variants in the fourth intron of the FTO gene on development of T2D may be mediated by mechanisms other than those manifested by SNPs in the first intron of the same gene.
  •  
8.
  • Rovite, Vita, et al. (författare)
  • The role of common and rare MC4R variants and FTO polymorphisms in extreme form of obesity
  • 2014
  • Ingår i: Molecular Biology Reports. - : Springer Science and Business Media LLC. - 0301-4851 .- 1573-4978. ; 41:3, s. 1491-500
  • Tidskriftsartikel (refereegranskat)abstract
    • Melanocortin 4 receptor (MC4R) is an important regulator of food intake and number of studies report genetic variations influencing the risk of obesity. Here we explored the role of common genetic variation from MC4R locus comparing with SNPs from gene FTO locus, as well as the frequency and functionality of rare MC4R mutations in cohort of 380 severely obese individuals (BMI > 39 kg/m(2)) and 380 lean subjects from the Genome Database of Latvian Population (LGDB). We found correlation for two SNPs-rs11642015 and rs62048402 in the fat mass and obesity-associated protein (FTO) with obesity but no association was detected for rs17782313 located in the MC4R locus in these severely obese individuals. We sequenced the whole gene MC4R coding region in all study subjects and found five previously known heterozygous non-synonymous substitutions V103I, I121T, S127L, V166I and I251L. Expression in mammalian cells showed that the S127L, V166I and double V103I/S127L mutant receptors had significantly decreased quantity at the cell surface compared to the wild type MC4R. We carried out detailed functional analysis of V166I that demonstrated that, despite low abundance in plasma membrane, the V166I variant has lower EC50 value upon αMSH activation than the wild type receptor, while the level of AGRP inhibition was decreased, implying that V166I cause hyperactive satiety signalling. Overall, this study suggest that S127L may be the most frequent functional MC4R mutation leading to the severe obesity in general population and provides new insight into the functionality of population based variants of the MC4R.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy