SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Knöös Tommy) srt2:(2010-2014)"

Search: WFRF:(Knöös Tommy) > (2010-2014)

  • Result 1-10 of 13
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ceberg, Crister, et al. (author)
  • Prediction of stopping-power ratios in flattening-filter free beams.
  • 2010
  • In: Medical Physics. - : Wiley. - 0094-2405. ; 37:3, s. 1164-1168
  • Journal article (peer-reviewed)abstract
    • PURPOSE: In recent years, there has been an increasing interest in flattening-filter free (FFF) beams. However, since the removal of the flattening filter will affect both the mean and the variance of the energy spectrum, current beam-quality specifiers may not be adequate for reference dosimetry in such beams. The purpose of this work was to investigate an alternative, more general beam-quality specifier. METHODS: The beam-quality specifier used in this work was a combination of the kerma-weighted mean and the coefficient of variation of the linear attenuation coefficient in water. These parameters can in theory be determined from narrow-beam transmission measurements using a miniphantom "in-air," which is a measurement condition well suited also to small and nonstandard fields. The relation between the Spencer-Attix stopping-power ratios and this novel beam-quality specifier was described by a simple polynomial. For reference, the authors used Monte Carlo calculated spectra and stopping-power data for nine different beams, with and without flattening filter. RESULTS: The polynomial coefficients were obtained by least-squares optimization. For all beams included in this investigation, the average of the differences between the predicted and the Monte Carlo calculated stopping-power ratios was 0.02 +/- 0.17% (1 SD) (including TomoTherapy and CyberKnife example beams). CONCLUSIONS: An alternative dual-parameter beam-quality specifier was investigated. The evaluation suggests that it can be used successfully to predict stopping-power ratios in FFF as well as conventional beams, regardless of filtration.
  •  
2.
  • Cunningham, Joanne, et al. (author)
  • Radiation Oncology Safety Information System (ROSIS) - Profiles of participants and the first 1074 incident reports
  • 2010
  • In: Radiotherapy and Oncology. - : Elsevier BV. - 1879-0887 .- 0167-8140. ; 97:3, s. 601-607
  • Journal article (peer-reviewed)abstract
    • Background and purpose: The Radiation Oncology Safety Information System (ROSIS) was established in 2001. The aim of ROSIS is to collate and share information on incidents and near-incidents in radiotherapy, and to learn from these incidents in the context of departmental infrastructure and procedures. Materials and methods: A voluntary web-based cross-organisational and international reporting and learning system was developed (cf. the www.rosis.info website). Data is collected via online Department Description and Incident Report Forms. A total of 101 departments, and 1074 incident reports are reviewed. Results: The ROSIS departments represent about 150,000 patients, 343 megavoltage (MV) units, and 114 brachytherapy units. On average, there are 437 patients per MV unit, 281 per radiation oncologist, 387 per physicist and 353 per radiation therapy technologist (RT/RTT). Only 14 departments have a completely networked system of electronic data transfer, while 10 departments have no electronic data transfer. On average seven quality assurance (QA) or quality control (QC) methods are used at each department. A total of 1074 ROSIS reports are analysed; 97.7% relate to external beam radiation treatment and 50% resulted in incorrect irradiation. Many incidents arise during pre-treatment but are not detected until later in the treatment process. Where an incident is not detected prior to treatment, an average of 22% of the prescribed treatment fractions were delivered incorrectly. The most commonly reported detection methods were "found at time of patient treatment" and during "chart-check". Conclusion: While the majority of the incidents that reported to this international cross-organisational reporting system are of minor dosimetric consequence, they affect on average more than 20% of the patient's treatment fractions. Nonetheless, defence-in-depth is apparent in departments registered with ROSIS. This indicates a need for further evaluation of the effectiveness of quality controls. (C) 2010 Published by Elsevier Ireland Ltd. Radiotherapy and Oncology 97 (2010) 601-607
  •  
3.
  • Dalaryd, Mårten, et al. (author)
  • A Monte Carlo study of a flattening filter-free linear accelerator verified with measurements.
  • 2010
  • In: Physics in Medicine and Biology. - : IOP Publishing. - 1361-6560 .- 0031-9155. ; 55:23, s. 7333-7344
  • Journal article (peer-reviewed)abstract
    • A Monte Carlo model of an Elekta Precise linear accelerator has been built and verified by measured data for a 6 and 10 MV photon beam running with and without a flattening filter in the beam line. In this study the flattening filter was replaced with a 6 mm thick copper plate, provided by the linac vendor, in order to stabilize the beam. Several studies have shown that removal of the filter improves some properties of the photon beam, which could be beneficial for radiotherapy treatments. The investigated characteristics of this new beam included output, spectra, mean energy, half value layer and the origin of scattered photons. The results showed an increased dose output per initial electron at the central axis of 1.76 and 2.66 for the 6 and 10 MV beams, respectively. The number of scattered photons from the accelerator head was reduced by (31.7 ± 0.03)% (1 SD) for the 6 MV beam and (47.6 ± 0.02)% for the 10 MV beam. The photon energy spectrum of the unflattened beam was softer compared to a conventional beam and did not vary significantly with the off-axis distance, even for the largest field size (0-20 cm off-axis).
  •  
4.
  • Dalaryd, Mårten, et al. (author)
  • Combining tissue-phantom ratios to provide a beam-quality specifier for flattening filter free photon beams.
  • 2014
  • In: Medical Physics. - : Wiley. - 0094-2405. ; 41:11
  • Journal article (peer-reviewed)abstract
    • There are currently several commercially available radiotherapy treatment units without a flattening filter in the beam line. Unflattened photon beams have an energy and lateral fluence distribution that is different from conventional beams and, thus, their attenuation properties differ. As a consequence, for flattening filter free (FFF) beams, the relationship between the beam-quality specifier TPR20,10 and the Spencer-Attix restricted water-to-air mass collision stopping-power ratios, L̄/ρair (water), may have to be refined in order to be used with equivalent accuracy as for beams with a flattening filter. The purpose of this work was twofold. First, to study the relationship between TPR20,10 and L̄/ρair (water) for FFF beams, where the flattening filter has been replaced by a metal plate as in most clinical FFF beams. Second, to investigate the potential of increasing the accuracy in determining L̄/ρair (water) by adding another beam-quality metric, TPR10,5. The relationship between L̄/ρair (water) and %dd(10)x for beams with and without a flattening filter was also included in this study.
  •  
5.
  • Fogliata, A., et al. (author)
  • Definition of parameters for quality assurance of flattening filter free (FFF) photon beams in radiation therapy
  • 2012
  • In: Medical Physics. - : Wiley. - 0094-2405. ; 39:10, s. 6455-6464
  • Journal article (peer-reviewed)abstract
    • Purpose: Flattening filter free (FFF) beams generated by medical linear accelerators have recently started to be used in radiotherapy clinical practice. Such beams present fundamental differences with respect to the standard filter flattened (FF) beams, making the generally used dosimetric parameters and definitions not always viable. The present study will propose possible definitions and suggestions for some dosimetric parameters for use in quality assurance of FFF beams generated by medical linacs in radiotherapy. Methods: The main characteristics of the photon beams have been analyzed using specific data generated by a Varian TrueBeam linac having both FFF and FF beams of 6 and 10 MV energy, respectively. Results: Definitions for dose profile parameters are suggested starting from the renormalization of the with respect to the corresponding FF beam. From this point the flatness concept has been translated into one of "unflatness" and other definitions have been proposed, maintaining a strict parallelism between FFF and FF parameter concepts. Conclusions: Ideas for quality controls used in establishing a quality assurance program when introducing FFF, beams into the clinical environment are given here, keeping them similar to those used for standard FF beams. By following the suggestions in this report, the authors foresee that the introduction of FFF beams into a clinical radiotherapy environment will be as safe and well controlled as standard beam modalities using the existing guidelines. (C) 2012 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4754799]
  •  
6.
  • Georg, Dietmar, et al. (author)
  • Current status and future perspective of flattening filter free photon beams
  • 2011
  • In: Medical Physics. - : Wiley. - 0094-2405. ; 38:3, s. 1280-1293
  • Journal article (peer-reviewed)abstract
    • Purpose: Flattening filters (FFs) have been considered as an integral part of the treatment head of a medical accelerator for more than 50 years. The reasons for the longstanding use are, however, historical ones. Advanced treatment techniques, such as stereotactic radiotherapy or intensity modulated radiotherapy have stimulated the interest in operating linear accelerators in a flattening filter free (FFF) mode. The current manuscript reviews treatment head physics of FFF beams, describes their characteristics and the resulting potential advantages in their medical use, and closes with an outlook. Methods: A number of dosimetric benefits have been determined for FFF beams, which range from increased dose rate and dose per pulse to favorable output ratio in-air variation with field size, reduced energy variation across the beam, and reduced leakage and out-of-field dose, respectively. Finally, the softer photon spectrum of unflattened beams has implications on imaging strategies and radiation protection. Results: The dosimetric characteristics of FFF beams have an effect on treatment delivery, patient comfort, dose calculation accuracy, beam matching, absorbed dose determination, treatment planning, machine specific quality assurance, imaging, and radiation protection. When considering conventional C-arm linacs in a FFF mode, more studies are needed to specify and quantify the clinical advantages, especially with respect to treatment plan quality and quality assurance. Conclusions: New treatment units are already on the market that operate without a FF or can be operated in a dedicated clinical FFF mode. Due to the convincing arguments of removing the FF, it is expected that more vendors will offer dedicated treatment units for advanced photon beam therapy in the near future. Several aspects related to standardization, dosimetry, treatment planning, and optimization need to be addressed in more detail in order to facilitate the clinical implementation of unflattened beams. (C) 2011 American Association of Physicists in Medicine. [DOI: 10.1118/1.3554643]
  •  
7.
  • Georg, Dietmar, et al. (author)
  • Photon beam quality variations of a flattening filter free linear accelerator
  • 2010
  • In: Medical Physics. - : Wiley. - 0094-2405. ; 37:1, s. 49-53
  • Journal article (peer-reviewed)abstract
    • Purpose: Recently, there has been an increasing interest in operating conventional linear accelerators without a flattening filter. The aim of this study was to determine beam quality variations as a function of off-axis ray angle for unflattened beams. In addition, a comparison was made with the off-axis energy variation in flattened beams. Methods: Two Elekta Precise linear accelerators were modified in order to enable radiation delivery with and without the flattening filter in the beam line. At the Medical University Vienna (Vienna, Austria), half value layer (HVL) measurements were performed for 6 and 10 MV with an in-house developed device that can be easily mounted on the gantry. At St. Luke's Hospital (Dublin, Ireland), measurements were performed at 6 MV in narrow beam geometry with the gantry tilted around 270 degrees with pinhole collimators, an attenuator, and the chamber positioned on the table. All attenuation measurements were performed with ionization chambers and a buildup cap (2 mm brass) or a PMMA mini phantom (diameter 3 cm, measurement depth 2.5 cm). Results: For flattened 6 and 10 MV photon beams from the Elekta linac the relative HVL(theta) varies by about 11% for an off-axis ray angle theta=10 degrees. These results agree within +/-2% with a previously proposed generic off-axis energy correction. For unflattened beams, the variation was less than 5% in the whole range of off-axis ray angles up to 10 degrees. The difference in relative HVL data was less than 1% for unflattened beams at 6 and 10 MV. Conclusions: Off-axis energy variation is rather small in unflattened beams and less than half the one for flattened beams. Thus, ignoring the effect of off-axis energy variation for dose calculations in unflattened beams can be clinically justified. (C) 2010 American Association of Physicists in Medicine. [DOI: 10.1118/1.3264617]
  •  
8.
  • Kragl, Gabriele, et al. (author)
  • Flattening filter free beams in SBRT and IMRT: Dosimetric assessment of peripheral doses
  • 2011
  • In: Zeitschrift für Medizinische Physik. - : Elsevier BV. - 1876-4436 .- 0939-3889. ; 21:2, s. 91-101
  • Journal article (peer-reviewed)abstract
    • Purpose: Recently, there has been a growing interest in operating medical linear accelerators without a flattening filter Due to reduced scatter, leaf transmission and radiation head leakage a reduction of out-of-field dose is expected for flattening filter free beams. The aim of the present study was to determine the impact of unflattened beams on peripheral dose for advanced treatment techniques with a large number of MUs. Material and methods: An Elekta Precise linac was modified to provide 6 and 10 MV photon beams without a flattening filter Basic beam data were collected and implemented into the TPS Oncentra Masterplan (Nucletron). Leakage radiation, which predominantly contributes to peripheral dose at larger distances from the field edge, was measured using a Farmer type ionisation chamber SBRT (lung) and IMRT (prostate, head&neck) treatment plans were generated for 6 and 10 MV for both flattened and unflattened beams. All treatment plans were delivered to the relevant anatomic region of an anthropomorphic phantom which was extended by a solid water slab phantom. Dosimetric measurements were performed with TLD-700 rods, radiochromic films and a Farmer type ionisation chamber The detectors were placed within the slab phantom and positioned along the isocentric longitudinal axis. Results: Using unflattened beams results in a reduction of treatment head leakage by 52% for 6 and 65% for 10 MV. Thus, peripheral doses were in general smaller for treatment plans calculated with unflattened beams. At about 20 cm distance from the field edge the dose was on average reduced by 23 and 31% for the 6 and 10 MV SBRT plans. For the IMRT plans (10 MV) the average reduction was 16% for the prostate and 18% for the head&neck case, respectively. For all examined cases, the relative deviation between peripheral doses of flattened and unflattened beams was found to increase with increasing distance from the field. Conclusions: Removing the flattening filter lead to reduced peripheral doses for advanced treatment techniques. The relative difference between peripheral doses of flattened and unflattened beams was more pronounced when the nominal beam energy was increased. Patients may benefit by decreased exposure of normal tissue to scattered dose outside the field.
  •  
9.
  • Petersson, Kristoffer, et al. (author)
  • Beam commissioning and measurements validating the beam model in a new TPS that converts helical tomotherapy plans to step-and-shoot IMRT plans.
  • 2011
  • In: Medical Physics. - : Wiley. - 0094-2405. ; 38:1, s. 40-46
  • Journal article (peer-reviewed)abstract
    • A new type of treatment planning system called SHAREPLAN has been studied, which enables the transfer of treatment plans generated for helical tomotherapy delivery to plans that can be delivered on C-arm linacs. The purpose is to ensure continuous patient treatment during periods of unscheduled downtime for the TomoTherapy unit, particularly in clinics without a backup unit. The purpose of this work was to verify that the plans generated in this novel planning system are deliverable and accurate. The work consists primarily of beam commissioning, verification of the beam model, and measurements verifying that generated plans are deliverable with sufficient accuracy.
  •  
10.
  • Petersson, Kristoffer, et al. (author)
  • Conversion of helical tomotherapy plans to step-and-shoot IMRT plans-Pareto front evaluation of plans from a new treatment planning system
  • 2011
  • In: Medical Physics. - : Wiley. - 0094-2405. ; 38:6, s. 3130-3138
  • Journal article (peer-reviewed)abstract
    • Purpose: The resulting plans from a new type of treatment planning system called SharePlan (TM) have been studied. This software allows for the conversion of treatment plans generated in a TomoTherapy system for helical delivery, into plans deliverable on C-arm linear accelerators (linacs), which is of particular interest for clinics with a single TomoTherapy unit. The purpose of this work was to evaluate and compare the plans generated in the SharePlan system with the original TomoTherapy plans and with plans produced in our clinical treatment planning system for intensity-modulated radiation therapy (IMRT) on C-arm linacs. In addition, we have analyzed how the agreement between SharePlan and TomoTherapy plans depends on the number of beams and the total number of segments used in the optimization. Methods: Optimized plans were generated for three prostate and three head-and-neck (H&N) cases in the TomoTherapy system, and in our clinical treatment planning systems (TPS) used for IMRT planning with step-and-shoot delivery. The TomoTherapy plans were converted into step-and-shoot IMRT plans in SharePlan. For each case, a large number of Pareto optimal plans were created to compare plans generated in SharePlan with plans generated in the Tomotherapy system and in the clinical TPS. In addition, plans were generated in SharePlan for the three head-and-neck cases to evaluate how the plan quality varied with the number of beams used. Plans were also generated with different number of beams and segments for other patient cases. This allowed for an evaluation of how to minimize the number of required segments in the converted IMRT plans without compromising the agreement between them and the original TomoTherapy plans. Results: The plans made in SharePlan were as good as or better than plans from our clinical system, but they were not as good as the original TomoTherapy plans. This was true for both the head-and-neck and the prostate cases, although the differences between the plans for the latter were small. The evaluation of the head-and-neck cases also showed that the plans generated in SharePlan were improved when more beams were used. The SharePlan Pareto front came close to the front for the TomoTherapy system when a sufficient number of beams were added. The results for plans generated with varied number of beams and segments demonstrated that the number of segments could be minimized with maintained agreement between SharePlan and TomoTherapy plans when 10-19 beams were used. Conclusions: This study showed (using Pareto front evaluation) that the plans generated in SharePlan are comparable to plans generated in other TPSs. The evaluation also showed that the plans generated in SharePlan could be improved with the use of more beams. To minimize the number of segments needed in a plan with maintained agreement between the converted IMRT plans and the original TomoTherapy plans, 10-19 beams should be used, depending on target complexity. SharePlan has proved to be useful and should thereby be a time-saving complement as a backup system for clinics with a single TomoTherapy system installed alongside conventional C-arm linacs. (C) 2011 American Association of Physicists in Medicine. [DOI: 10.1118/1.3592934]
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view