SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Knutsson Sven 1948 ) srt2:(2020)"

Sökning: WFRF:(Knutsson Sven 1948 ) > (2020)

  • Resultat 1-10 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdullah, Twana, et al. (författare)
  • Assessment of groundwater vulnerability to pollution using two different vulnerability models in Halabja-Saidsadiq Basin, Iraq
  • 2020
  • Ingår i: Groundwater for Sustainable Development. - : Elsevier. - 2352-801X. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Groundwater aquifer in Halabja-Saidsadiq Basin considered as one of the most important aquifers in terms of water supplying in Kurdistan Region, NE of Iraq. The growing of economics, irrigation and agricultural activities inside the basin makes it of the main essentials to the region. Therefore, pollution of groundwater is of specific worry as groundwater resources are the principal source of water for drinking, agriculture, irrigation and industrial activities. Thus, the best and practical arrangement is to keep the pollution of groundwater through. The current study aims to evaluate of the vulnerability of groundwater aquifers of the study area. Two models were applied, to be specific VLDA and COP to develop maps of groundwater vulnerability for contamination. The VLDA model classified the area into four classes of vulnerability: low, moderate, high and very high with coverage area of (2%,44%,53% and 1%), respectively. While four vulnerability classes were accomplished dependent on COP model including very low, low, moderate and high vulnerability classes with coverage areas of (1%, 37%, 2% and 60%) respectively. To confirm the suitability of each map for assessment of groundwater vulnerability in the area, it required to be validated of the theoretical sympathetic of current hydrogeological conditions. In this study, groundwater age evaluated utilizing tritium isotopes investigation and applied it to validate the vulnerability results. Based on this validation, the outcome exhibits that the vulnerability classes acquired utilizing VLDA model are more predictable contrasted with the COP model.
  •  
2.
  • Abdullah, Twana, 1977- (författare)
  • Groundwater Vulnerability Assessment to pollution in Different Soil and Rock Materials
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The augmentation of human population regularly corresponds with change in the land cover, including expansion of urban areas, which imposes increasing the available amount of domestic and drinking water. The study area, Halabja-Saidsadiq Basin, is situated in the Northeast of Iraq and is one of the major groundwater sources of the region.  As the surface water sources are not enough in the studied area, it has become necessary to use groundwater at an increasing rate. Usually, a huge amount of groundwater is plentiful in the alluvial deposits or rock outcrops where the urban areas are frequently situated. Such areas face a huge risk of pollution of groundwater due to producing different sources of a contaminant from human's activity. Keeping these aspects in view, groundwater vulnerability studies have been carried out in the current studied basin. The main objective of this work is to investigate the environmental impacts on groundwater quality and recognize the groundwater vulnerability in the area so that the groundwater can be protected from probable contaminations.In the current study, DRASTIC model has been applied since it is one of the most proper useful methods available for the assessment of the groundwater vulnerability. This model has been modified in different ways to achieve the obvious vulnerability condition in the area; likewise, different further methods have been applied for comparison purposes such as: weight modified VLDA and standard COP models. In addition, the applied models were validated by comparing its findings against the estimated groundwater ages and the observed water characteristic qualities within the region in two successive seasons.According to the spatial distribution of irrigation water quality index, groundwater at the studied basin classified into three group for both dry and wet seasons, namely, Sever Restriction (SR), High Restriction (HR) and Moderate Restriction (MR). The coverage area of all three classes are (1.4%, 52.4% and46.2%) for dry season and (0.7%, 83.3% and16%) for wet seasons, respectively. While, refer to the water quality index for drinking purpose, groundwater in this basin reveals a permissible to excellent groundwater quality of the dry season and a good to excellent groundwater quality of the wet season. The high level of a good groundwater quality in the wet season compared to the dry season might be expected to the groundwater recharge during the winter and spring periods, which lead to dilution of chemical component, in contrast high irrigation and agricultural activities and groundwater discharge in the dry season leads to increase the concentration of chemical component.Field and official data were collected to review several environmental impacts and were used to map standard DRASTIC vulnerability model for the study basin. Based on this model, the study area was classified into four zones of vulnerability indexes, comprises a very low, low, moderate and high vulnerability index with a coverage area of (34%, 13%, 48% and 5%) respectively.In the first modification step, the rate and weight value of each parameter in DRASTIC model is modified. Nitrate concentration from 39 groundwater samples was used for modifying the recommended standard rating value based on the Wilcoxon rank-sum nonparametric statistical test and then sensitivity analysis was used to modifying recommended standard weighting value of each parameter. To calibrate the modified rate, the Pearson's correlation coefficient was applied to estimate the relation between DRASTIC values and nitrate concentrations in groundwater samples. For the first modified model, the correlation coefficient was 72% that was significantly higher than 43% achieved for the standard model. The modified model classified the area into five vulnerability classes, including (very low, low, moderate, high and very high) with covered area of (7%, 35%, 19%, 35% and 4%), respectively.The second modification of DRASTIC model was based on land use and land cover for the studied area. The land use and land cover (LULC) map prepared using ERDAS IMAGINE software from two different scenes of Landsat Thematic Mapper (TM). The LULC map indicates that only five classes of LULC can be identified: these are: barren land, agricultural land, vegetation land, urban area and wet land or water body. The modified DRASTIC based on LULC map classified the area into five classes with different coverage area of each class: very low (1.17%), low (36.82%), moderate (17.57%), high (43.42%) and very high (1.02%).The third modified method of the current study is the modification of DRASTIC model based on Lineament feature of the study basin. A lineament map is extracted from Enhanced Thematic Mapper plus (ETM+) satellite imagery using different techniques in remote sensing and GIS. The lineament density map demonstrates that only six classes of lineament density can be identified ranged from (0-2.4). The third modified DRASTIC model classified the area into four vulnerability categories: very low (28.75%), low (14.31%), moderate (46.91%) and high (10.03%).The fourth effort to modify standard DRASTIC model is the application of Analytical Hierarchical Process (AHP) to assess the weight value of each parameter. The modified DRASTIC vulnerability index values based on AHP method ranged between (65.82–224.1) with five vulnerability classes comprises (very low to very high).Weight modified VLDA and standard COP models were also applied to map vulnerability system in the study basin. The vulnerability outcome based on weight modified VLDA model revealed that a total of four ranges of vulnerability indexes had been distinguished ranging from low to very high with vulnerability indexes (2.133-9.16). Subsequently, based on the standard COP model, the area is also divided into four vulnerability classes ranging from very low to high with index value ranged from (0.79) to (6.2).All applied models in the study basin were compared to each other and validated to clarify the validity of the theoretical sympathetic of current hydrogeological conditions and to show the accuracy of the modeled vulnerability system. Two methods were applied for the validation of the result, in the first approach; nitrate concentration analysis has been selected; the nitrate differences between two following seasons (dry and wet) were analyzed from (39) water wells. In the second approach, groundwater vulnerability was assessed based on estimated groundwater age from range of tritium (3H) value in the groundwater samples from different groundwater aquifers in the studied area. The results of both validation methods verify the sensibility of the gradation and distribution of vulnerability levels acquired using the modified DRASTIC model based on (rate and weight modification, weight modification based on AHP process and effect of LULC on DRASTIC model) and also applying weight modified of VLDA model.
  •  
3.
  • Abdullah, Twana O., et al. (författare)
  • Magnitude and Direction of Groundwater Seepage Velocity in Different Soil and Rock Materials
  • 2020
  • Ingår i: Engineering. - USA : Scientific Research Publishing. - 1947-3931 .- 1947-394X. ; 12:4, s. 242-253
  • Tidskriftsartikel (refereegranskat)abstract
    • To understand and anticipate flow in various groundwater media, the magnitude and direction of groundwater flow velocity must be deemed. The studied area which is called Halabja-Sadiq Basin is in the northeastern part of Iraq and covers an area of approximately 128,000 square hectometers. There are several groundwater aquifers in this region that supply nearly over 90% of all water needs. Subsequently, it is of highly requirement to identify various groundwater behaviors in the area. The objective of this study is to estimate the magnitude and direction of the groundwater seepage velocity with the aid of groundwater tool in Geographic Information System technology. Refer to the results of this analysis, the magnitude value of groundwater flow velocity ranged from 0 to 51 m/d, whilst the general flow movement is from the eastern part to the western part of the study area. The factor governing the direction of flow and velocity magnitude indicates the direction of dipping of the geological formation strata, the high head of groundwater in the eastern part, and the low transmissivity properties of aquifer materials in the western part.
  •  
4.
  • Adamo, Nasrat, et al. (författare)
  • Dam Safety : General Considerations
  • 2020
  • Ingår i: Journal of Earth Sciences and Geotechnical Engineering. - : Scientific Press International Limited. - 1792-9040 .- 1792-9660. ; 10:6, s. 1-21
  • Tidskriftsartikel (refereegranskat)abstract
    • Dams construction is an old art practiced by man since thousands of years. History of dams shows great innovations in this field, but failure cases, however, indicate gaps in human knowledge of safety measures that could have stopped such failures. Available statistics show of a great boom in building dams during the past century and indicate at the same time large number of failures associated with losses in human lives and material damage. Uses of these dams during this period, apart from flood control and storing water for irrigation were also for hydropower generation, navigation, drinking water supply, recreation and in mining operations as tailing dams. Reduced dam safety leading to failures, accidents and higher safety hazards were caused by insufficient knowledge of the geological conditions and in using wrong or deficient foundation treatment. Dam safety was compromised in cases of insufficient hydrological data and design of inadequate spillways. Misinterpretation of the seismic conditions of the area and adopting seismic criteria compatible with such seismic conditions is also added as one more reasons of failures. Human mistakes and errors have undermined safety in many cases in the operation of dams leading to grave safety issues including many failures. Safety hazards also were exasperated by increasing population and land use in the downstream areas of dams and by failing to do necessary inspection and maintenance or upgrading works.  More emphasis over  dam safety measures is needed now in our existing dams and in their future development of dams if they are to continue delivering their benefit without causing harm to human communities.
  •  
5.
  • Adamo, Nasrat, et al. (författare)
  • Dam Safety : Technical Problems of Ageing Concrete Dams
  • 2020
  • Ingår i: Journal of Earth Sciences and Geotechnical Engineering. - : Scientific Press International Limited. - 1792-9040 .- 1792-9660. ; 10:6, s. 241-279
  • Tidskriftsartikel (refereegranskat)abstract
    • Concrete dams age as all man-made structures. Being subject to various external influences and internal reactions their ability to withstand them diminishes with time. Description of these factors are given here. The manifestations of aging signs are cracking, expansion, spalling and scaling of concrete surfaces, change of color and efflorescence, gelatinous discharge, crumbling of concrete masses, in addition to abrasion and cavitation of surfaces. The mechanisms of the actions leading to these damages are described and supported by many examples and case studies. The general conclusion drawn is that nothing can be made to extend the lives of old dam indefinitely, but a lot can be done to elongate their useful service with repair and upgrading works until technical considerations prove them unfeasible or their cost become prohibitive.
  •  
6.
  • Adamo, Nasrat, et al. (författare)
  • Dam Safety : Technical Problems of Aging Embankment Dams
  • 2020
  • Ingår i: Journal of Earth Sciences and Geotechnical Engineering. - : Scientific Press International Limited. - 1792-9040 .- 1792-9660. ; 10:6, s. 281-322
  • Tidskriftsartikel (refereegranskat)abstract
    • Embankment dams undergo aging process due to the impact of different factors which can be attributed to geology of the site, design of the dam, materials selection and procedures followed in constructions. In the foundation the presence of faults or shearing planes, karst, compressible clayey material, soluble rock, and soft rock may establish conditions leading to high total settlement or differential settlements of the dam and its cracking. Deficient and deteriorating seepage control measures such as grout curtains or diaphragms enhance seepage flow leading to internal erosion and piping which endanger dams’ stability. Improper filling materials used such as dispersive clays and gap graded granular material show their bad influence after long time by creating conditions inducive to internal erosion and piping. Use of improperly designed and placed filter zones and drainage blankets can end in clogging of such filters and drainage blankets leading to the rise of the phreatic surface level and increasing uplift causing again conditions of internal erosion and piping and undermine stability. This work attempts to give an overview of these conditions and cite many case studies of rehabilitation works carried out in dams after long years of service. The conclusion reached is that rehabilitation works if done early when problems are discovered play well to elongate the service life of dams, but normally they require large investments. Sooner or later owners of such old dams will come to realize that more rehabilitation works, neither technically nor economically, are feasible and that more of such works are not possible. In which case they will come think seriously of decommission such expired dams.
  •  
7.
  • Adamo, Nasrat, et al. (författare)
  • Dam Safety and Dams Hazards
  • 2020
  • Ingår i: Journal of Earth Sciences and Geotechnical Engineering. - UK : Scientific Press International Limited. - 1792-9040 .- 1792-9660. ; 10:6, s. 23-40
  • Tidskriftsartikel (refereegranskat)abstract
    • Dam safety hazards towards human communities have increased tremendously during the last decades. They have resulted from dam safety problems leading to failure and being exasperated by the large losses at downstream areas due to increasing populations and land use. In this work, an attempt is being made to review the procedures being followed to reduces these hazards by improving dams safety standards. Classification of dams by their potential hazards are explained as used today for prioritize remedial actions in various countries of the world. The guiding principles of these classification are indicated and they are based on height of such dams and their storage and linked to the potential damage and harm they can create. Normally such classification and follow up actions are supported by various legislations and regulations issued by the respective governments. Moreover, conventions signed by riparian countries promote cooperation on mitigating safety problems of dams on transboundary rivers. Examples of such legislations and conventions are mentioned. Looking for having safer dams is an objective continually which is being pursued as more dams are needed in the future while existing dams continue to serve their objectives. Therefore, using lessons learned from previous failures is recommended taking the question of loss of life as a main doctrine.
  •  
8.
  • Adamo, Nasrat, et al. (författare)
  • Dam Safety and Earthquakes
  • 2020
  • Ingår i: Journal of Earth Sciences and Geotechnical Engineering. - UK : Scientific Press International Limited. - 1792-9040 .- 1792-9660. ; 10:6, s. 79-132
  • Tidskriftsartikel (refereegranskat)abstract
    • Earthquakes may cause failure or profound damage for dams. Factors contributing to this are, magnitude on the Richter scale, peak horizontal and vertical accelerations, time duration, in addition to the epicentral distance, nature of foundation rock, criteria of the design, and finally, if appropriate type of dam and materials has been used.  Extensive lists of dam failures and damaged once are presented with many case histories. Most failed dams were tailing dams or hydraulic fill dams or small earth fill dams, which reflect the weight of the design and construction factors. Embankment dams, normally, are less tolerant to ground shacking than concrete dams. While rockfill and RCC dams have shown good performance. The developments of design methods and criteria are traced here, from the early use of the pseudoptotic method to the more rational dynamic analysis, which is used nowadays making construction of very large safe dams in seismic regions possible. The method adopts peak ground accelerations from anticipated earthquakes as inputs to the analysis which produce a full spectrum of the factor of safety during any considered event. This has led to increased use of seismic instrumentation to produce seismographs of actual events in the free field, and on dams hit by earthquakes for comparison with outputs of this analysis and for future use for similar dams in similar circumstances, and to decide on rehabilitation measures. The safety levels to which any dam is to be designed are defined in terms of the Maximum Credible Earthquake, Safety Evaluation Earthquake, Maximum Design Earthquake and other similar terms. Dam repairs after sustaining earthquake damages are described in real cases and upgrading of older dams to withstand higher expected seismic events are also treated here and supported by case histories.
  •  
9.
  • Adamo, Nasrat, et al. (författare)
  • Dam Safety and Οvertopping
  • 2020
  • Ingår i: Journal of Earth Sciences and Geotechnical Engineering. - : Scientific Press International Limited. - 1792-9040 .- 1792-9660. ; 10:6, s. 41-78
  • Tidskriftsartikel (refereegranskat)abstract
    • Overtopping is one of the most serious modes of failures for all dams causing great numbers of human fatalities and material damages. Statistics show that overtopping failures are the highest, especially for embankment dams. The main reason for this is the erroneous prediction of the inflow design discharge, which has resulted from lack of realistic flow data and imperfect hydrological procedures. Failure in most cases occurs when the inflow exceeds the spillway design capacity, but to a lesser extent from the buildup of very high wave setup and runs up. This has led to active efforts in upgrading dams for such occurrences, by either upgrading spillways, adding auxiliary spillways, increasing freeboard by either heightening the dams or the parapet walls on the crest. Advancement in predicting the safe inflow discharges are also made by adopting such procedures as the calculation of the Probable maximum flood based on predicting the Maximum Probable Precipitation or using statistical methods by treating long records of available flow data. Recently, another challenge has come up facing dam owners and builders who are represented by the climate change impacts on the hydrological cycle; this has put a new responsibility to the governments to issue new regulations and plans to mitigate these impacts reducing failure possibilities and improve dam safety against overtopping.
  •  
10.
  • Adamo, Nasrat, et al. (författare)
  • Dam Safety Problems Related to Seepage
  • 2020
  • Ingår i: Journal of Earth Sciences and Geotechnical Engineering. - : Scientific Press International Limited. - 1792-9040 .- 1792-9660. ; 10:6, s. 191-239
  • Tidskriftsartikel (refereegranskat)abstract
    • Dangerous occurrences affecting dams take multiple forms, but seepage caused cases are the most numerous. Some of the cases are related to the geology of the foundation and the magnitude and type of discontinuities in the rock mass of the dam. Other are mainly due to of construction material in earth fill dams. Seepage occurs in all earth fill dams regardless of its materials, and seepage water can daylight at the downstream face causing erosion, piping and sloughing and instability; unless certain measures are taken. Instability can be controlled mainly by adding, filter material zones at the contacts with the clay core, chimney filter drain at the downstream part of the dam, filter zone or bench at the toe together with the drainage blanket under the downstream part of the dam. Seepage within the dam is enhanced by cracks which may result from uneven settlement of the dam due to different elastic behavior of the foundation materials, hydraulic fracturing, and differential settlement of parts of the dam or due to ground shaking in earthquakes. Preferential seepage paths can develop in such cracks, especially if the fill material is dispersive or suffusive. Similarly, such paths may develop along the contact surfaces of conduits installed under dams as outlet structures due to the low degree of compaction as a result of narrow trench dimensions. Using properly designed filter and drainages can reduce seepage quantities and the erosive force which causes internal erosion. In dam’s foundation grout curtains or other type of cutoffs can reduce the hydraulic head and hence uplift under the dam and hinder seepage.  Drainage, however, remains as the most efficient method in controlling this uplift in artesian conditions under dams, especially under concrete gravity dams. Generally, such drainage may take the form of drainage blanket and use of filters material. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy