SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Koch Reinhard) srt2:(2010-2014)"

Sökning: WFRF:(Koch Reinhard) > (2010-2014)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hedborg, Johan, 1876- (författare)
  • Motion and Structure Estimation From Video
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Digital camera equipped cell phones were introduced in Japan in 2001, they quickly became popular and by 2003 outsold the entire stand-alone digital camera market. In 2010 sales passed one billion units and the market is still growing. Another trend is the rising popularity of smartphones which has led to a rapid development of the processing power on a phone, and many units sold today bear close resemblance to a personal computer. The combination of a powerful processor and a camera which is easily carried in your pocket, opens up a large eld of interesting computer vision applications.The core contribution of this thesis is the development of methods that allow an imaging device such as the cell phone camera to estimates its own motion and to capture the observed scene structure. One of the main focuses of this thesis is real-time performance, where a real-time constraint does not only result in shorter processing times, but also allows for user interaction.In computer vision, structure from motion refers to the process of estimating camera motion and 3D structure by exploring the motion in the image plane caused by the moving camera. This thesis presents several methods for estimating camera motion. Given the assumption that a set of images has known camera poses associated to them, we train a system to solve the camera pose very fast for a new image. For the cases where no a priory information is available a fast minimal case solver is developed. The solver uses ve points in two camera views to estimate the cameras relative position and orientation. This type of minimal case solver is usually used within a RANSAC framework. In order to increase accuracy and performance a renement to the random sampling strategy of RANSAC is proposed. It is shown that the new scheme doubles the performance for the ve point solver used on video data. For larger systems of cameras a new Bundle Adjustment method is developed which are able to handle video from cell phones.Demands for reduction in size, power consumption and price has led to a redesign of the image sensor. As a consequence the sensors have changed from a global shutter to a rolling shutter, where a rolling shutter image is acquired row by row. Classical structure from motion methods are modeled on the assumption of a global shutter and a rolling shutter can severely degrade their performance. One of the main contributions of this thesis is a new Bundle Adjustment method for cameras with a rolling shutter. The method accurately models the camera motion during image exposure with an interpolation scheme for both position and orientation.The developed methods are not restricted to cellphones only, but is rather applicable to any type of mobile platform that is equipped with cameras, such as a autonomous car or a robot. The domestic robot comes in many  avors, everything from vacuum cleaners to service and pet robots. A robot equipped with a camera that is capable of estimating its own motion while sensing its environment, like the human eye, can provide an eective means of navigation for the robot. Many of the presented methods are well suited of robots, where low latency and real-time constraints are crucial in order to allow them to interact with their environment.
  •  
2.
  • Schindler, Birgit Karin, et al. (författare)
  • The European COPHES/DEMOCOPHES project: Towards transnational comparability and reliability of human biomonitoring results.
  • 2014
  • Ingår i: International Journal of Hygiene and Environmental Health. - : Elsevier BV. - 1618-131X .- 1438-4639. ; 217:6, s. 653-661
  • Tidskriftsartikel (refereegranskat)abstract
    • COPHES/DEMOCOPHES has its origins in the European Environment and Health Action Plan of 2004 to "develop a coherent approach on human biomonitoring (HBM) in Europe". Within this twin-project it was targeted to collect specimens from 120 mother-child-pairs in each of the 17 participating European countries. These specimens were investigated for six biomarkers (mercury in hair; creatinine, cotinine, cadmium, phthalate metabolites and bisphenol A in urine). The results for mercury in hair are described in a separate paper. Each participating member state was requested to contract laboratories, for capacity building reasons ideally within its borders, carrying out the chemical analyses. To ensure comparability of analytical data a Quality Assurance Unit (QAU) was established which provided the participating laboratories with standard operating procedures (SOP) and with control material. This material was specially prepared from native, non-spiked, pooled urine samples and was tested for homogeneity and stability. Four external quality assessment exercises were carried out. Highly esteemed laboratories from all over the world served as reference laboratories. Web conferences after each external quality assessment exercise functioned as a new and effective tool to improve analytical performance, to build capacity and to educate less experienced laboratories. Of the 38 laboratories participating in the quality assurance exercises 14 laboratories qualified for cadmium, 14 for creatinine, 9 for cotinine, 7 for phthalate metabolites and 5 for bisphenol A in urine. In the last of the four external quality assessment exercises the laboratories that qualified for DEMOCOPHES performed the determinations in urine with relative standard deviations (low/high concentration) of 18.0/2.1% for cotinine, 14.8/5.1% for cadmium, 4.7/3.4% for creatinine. Relative standard deviations for the newly emerging biomarkers were higher, with values between 13.5 and 20.5% for bisphenol A and between 18.9 and 45.3% for the phthalate metabolites. Plausibility control of the HBM results of all participating countries disclosed analytical shortcomings in the determination of Cd when using certain ICP/MS methods. Results were corrected by reanalyzes. The COPHES/DEMOCOPHES project for the first time succeeded in performing a harmonized pan-European HBM project. All data raised have to be regarded as utmost reliable according to the highest international state of the art, since highly renowned laboratories functioned as reference laboratories. The procedure described here, that has shown its success, can be used as a blueprint for future transnational, multicentre HBM projects.
  •  
3.
  • Schwarz, Sebastian, 1980- (författare)
  • Gaining Depth : Time-of-Flight Sensor Fusion for Three-Dimensional Video Content Creation
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The successful revival of three-dimensional (3D) cinema has generated a great deal of interest in 3D video. However, contemporary eyewear-assisted displaying technologies are not well suited for the less restricted scenarios outside movie theaters. The next generation of 3D displays, autostereoscopic multiview displays, overcome the restrictions of traditional stereoscopic 3D and can provide an important boost for 3D television (3DTV). Then again, such displays require scene depth information in order to reduce the amount of necessary input data. Acquiring this information is quite complex and challenging, thus restricting content creators and limiting the amount of available 3D video content. Nonetheless, without broad and innovative 3D television programs, even next-generation 3DTV will lack customer appeal. Therefore simplified 3D video content generation is essential for the medium's success.This dissertation surveys the advantages and limitations of contemporary 3D video acquisition. Based on these findings, a combination of dedicated depth sensors, so-called Time-of-Flight (ToF) cameras, and video cameras, is investigated with the aim of simplifying 3D video content generation. The concept of Time-of-Flight sensor fusion is analyzed in order to identify suitable courses of action for high quality 3D video acquisition. In order to overcome the main drawback of current Time-of-Flight technology, namely the high sensor noise and low spatial resolution, a weighted optimization approach for Time-of-Flight super-resolution is proposed. This approach incorporates video texture, measurement noise and temporal information for high quality 3D video acquisition from a single video plus Time-of-Flight camera combination. Objective evaluations show benefits with respect to state-of-the-art depth upsampling solutions. Subjective visual quality assessment confirms the objective results, with a significant increase in viewer preference by a factor of four. Furthermore, the presented super-resolution approach can be applied to other applications, such as depth video compression, providing bit rate savings of approximately 10 percent compared to competing depth upsampling solutions. The work presented in this dissertation has been published in two scientific journals and five peer-reviewed conference proceedings. In conclusion, Time-of-Flight sensor fusion can help to simplify 3D video content generation, consequently supporting a larger variety of available content. Thus, this dissertation provides important inputs towards broad and innovative 3D video content, hopefully contributing to the future success of next-generation 3DTV.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy