SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Komarov A) srt2:(2015-2019)"

Sökning: WFRF:(Komarov A) > (2015-2019)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lappalainen, Hanna K., et al. (författare)
  • Pan-Eurasian Experiment (PEEX) : towards a holistic understanding of the feedbacks and interactions in the land-atmosphere-ocean-society continuum in the northern Eurasian region
  • 2016
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:22, s. 14421-14461
  • Tidskriftsartikel (refereegranskat)abstract
    • The northern Eurasian regions and Arctic Ocean will very likely undergo substantial changes during the next decades. The Arctic-boreal natural environments play a crucial role in the global climate via albedo change, carbon sources and sinks as well as atmospheric aerosol production from biogenic volatile organic compounds. Furthermore, it is expected that global trade activities, demographic movement, and use of natural resources will be increasing in the Arctic regions. There is a need for a novel research approach, which not only identifies and tackles the relevant multi-disciplinary research questions, but also is able to make a holistic system analysis of the expected feedbacks. In this paper, we introduce the research agenda of the Pan-Eurasian Experiment (PEEX), a multi-scale, multi-disciplinary and international program started in 2012 (https://www.atm.helsinki.fi/peex/). PEEX sets a research approach by which large-scale research topics are investigated from a system perspective and which aims to fill the key gaps in our understanding of the feedbacks and interactions between the land-atmosphereaquatic-society continuum in the northern Eurasian region. We introduce here the state of the art for the key topics in the PEEX research agenda and present the future prospects of the research, which we see relevant in this context.
  •  
2.
  • Budnyak, Tetyana, et al. (författare)
  • Imidazole-2yl-Phosphonic Acid Derivative Grafted onto Mesoporous Silica Surface as a Novel Highly Effective Sorbent for Uranium(VI) Ion Extraction
  • 2018
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 10:7, s. 6681-6693
  • Tidskriftsartikel (refereegranskat)abstract
    • A new imidazol-2yl-phosphonic acid/mesoporous silica sorbent (ImP(O)(OH)(2)/SiO2) was developed and applied for uranium(VI) ion removal from aqueous solutions. The synthesized material was characterized by fast kinetics and an extra-high adsorption capacity with respect to uranium. The highest adsorption efficiency of U(VI) ions was obtained for the reaction system at pH 4 and exceeded 618 mg/g. The uranium(VI) sorption proceeds quickly in the first step within 60 min of the adsorbent sites and ion interactions. Moreover, the equilibrium time was determined to be 120 min. The equilibrium and kinetic characteristics of the uranium(VI) ions uptake by synthesized sorbent was found to follow the Langmuir-Freundlich isotherm model and pseudo-second-order kinetics rather than the Langmuir, Dubinin-Radushkevich, and Temkin models and pseudo-first-order or intraparticle diffusion sorption kinetics. The adsorption mechanism for uranium on the sorbent was clarified basing on the X-ray photoelectron spectroscopy (XPS) analysis. The model of UO22+ binding to surface of the sorbent was proposed according to the results of XPS, i.e., a 1:1 U-to-P ratio in the sorbed complex was established. The regeneration study confirms the ImP(O)(OH)(2)/SiO2 sorbent can be reused. A total of 45% of uranium ions was determined as originating from the sorbent leaching in the acidic solutions, whereas when the basic solutions were used, the removal efficiency was 12%.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy