SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kong Xiangrui) srt2:(2011-2014)"

Sökning: WFRF:(Kong Xiangrui) > (2011-2014)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kong, Xiangrui, et al. (författare)
  • Environmental molecular beam studies of ice surface processes
  • 2011
  • Ingår i: Physics and Chemistry of Ice 2010 (The 12th International Conference on the Physics and Chemistry of Ice, Sapporo, Japan, September 5-10, 2010, Eds. Y. Furukawa, G. Sazaki, T. Uchida, N. Watanabe, Hokkaido University Press, Sapporo, Japan, 2011). - 9784832903616 ; , s. 79-88
  • Konferensbidrag (refereegranskat)abstract
    • The development and application of a new molecular beam setup for studies of gas-ice interactions at pressures in the 0.001 mbar range is described. Direct simulation Monte Carlo calculations have been applied to optimize the experimental design with respect to gas transmission through the high pressure zone outside the ice surface and pressure along the surface plane. In a first application of the new setup elastic helium scattering and light scattering have been used to study the formation of water, methanol and water-methanol ice on a graphite surface in the temperature range from 180 to 215 K. Water does not wet the graphite surface under these conditions, in agreement with earlier results obtained below 180 K, while methanol readily forms a thin layer on the surface. Methanol enhances water ice nucleation and influences the properties of the ice formed, but does not have a major impact on ice growth or evaporation once a thick water-containing ice layer has formed. The potential for further development of the molecular beam technique are discussed.
  •  
2.
  • Kong, Xiangrui, et al. (författare)
  • Ice Formation via Deposition Mode Nucleation on Bare and Alcohol-Covered Graphite Surfaces
  • 2012
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 116:16, s. 8964-8974
  • Tidskriftsartikel (refereegranskat)abstract
    • Deposition of water on aerosol particles contributes to ice cloud formation in the atmosphere with implications for the water cycle and climate on Earth. The heterogeneous ice nucleation process is influenced by physicochemical properties of the substrate, but the mechanisms remain incompletely understood. Here, we report on ice formation on bare and alcohol-covered graphite at temperatures from 175 to 213 K, probed by elastic helium and light scattering. Water has a low wettability on bare and butanol-covered graphite resulting in the growth of rough ice surfaces. In contrast, preadsorbed methanol provides hydrophilic surface sites and results in the formation of smooth crystalline ice; an effect that is pronounced also for submonolayer methanol coverages. The alcohols primarily reside at the ice surface and at the ice–graphite interface with a minor fraction being incorporated into the growing ice structures. Methanol has no observable effect on gas/solid water vapor exchange, whereas butanol acts as a transport barrier for water resulting in a reduction in ice evaporation rate at 185 K. Implications for the description of deposition mode freezing are discussed.
  •  
3.
  • Kong, Xiangrui (författare)
  • Molecular investigations of atmospherically relevant interface processes: ice formation and water accommodation on ice and organic surfaces
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Clouds and aerosols play important roles in the climate system by affecting on atmospheric chemistry, the radiation budget of the atmosphere, and the water cycle including the formation of precipitation. Climate models with predictive power require quantitative descriptions of aerosols and clouds, but several key processes remain to be fully understood. One important example is the formation and growth of ice particles in clouds. Organic compounds also form secondary organic aerosol and coatings on existing particles including ice nuclei and ice cloud particles, which further complicate the description of cloud processes. To improve the understanding of these processes, some fundamental investigations of atmospherically relevant interface interactions are carried out, and the results and findings are summarized and discussed in this thesis. The investigations use a newly developed environmental molecular beam (EMB) technique as the main experimental method. The principle, design and demonstration of the EMB method are described in detail. The method allows for ice surface investigations at temperatures up to 213 K, and it is employed to study gas-surface interactions under conditions relevant to the troposphere. The main findings of this thesis are related to three research themes: (1) Ice formation via deposition mode nucleation on hydrophobic and hydrophilic surfaces is characterized. The critical supersaturation required to activate nucleation on various surfaces increases rapidly with decreasing temperature below 200 K, and adsorbed organic compounds are observed to influence the nucleation, structure and growth rate of ice. (2) Water uptake by bare ice and coated ice surfaces is investigated. The accommodation and desorption kinetics for water on bare ice is quantitatively described by a precursor model. Coatings on ice have a significant impact on water uptake, and adsorption of acids commonly found in the atmosphere tends to enhance water accommodation. (3) Water interactions with surfaces on condensed organic phases and organic coatings on graphite are characterized. Bulk accommodation is inefficient on solid organic surfaces, while water uptake is efficient on liquid phases. The surface layer on condensed n-butanol is shown to change gradually from solid to liquid over a 10 K temperature span around the bulk melting temperature, with major implications for water uptake. The thesis includes the development of new experimental methods and an improved molecular-level understanding of processes at gas-solid and gas-liquid interfaces, and thereby contributes to a better description of cloud and aerosol processes in the environment.
  •  
4.
  • Kong, Xiangrui, et al. (författare)
  • Water Accommodation and Desorption Kinetics on Ice
  • 2014
  • Ingår i: Journal of Physical Chemistry A. - : American Chemical Society (ACS). - 1089-5639 .- 1520-5215. ; 118:22, s. 3973-3979
  • Tidskriftsartikel (refereegranskat)abstract
    • The interaction of water vapor with ice remains incompletely understood despite its importance in environmental processes. A particular concern is the probability for water accommodation on the ice surface, for which results from earlier studies vary by more than 2 orders of magnitude. Here, we apply an environmental molecular beam method to directly determine water accommodation and desorption kinetics on ice. Short D2O gas pulses collide with H2O ice between 170 and 200 K, and a fraction of the adsorbed molecules desorbs within tens of milliseconds by first order kinetics. The bulk accommodation coefficient decreases nonlinearly with increasing temperature and reaches 0.41 +/- 0.18 at 200 K. The kinetics are well described by a model wherein water molecules adsorb in a surface state from which they either desorb or become incorporated into the bulk ice structure. The weakly bound surface state affects water accommodation on the ice surface with important implications for atmospheric cloud processes.
  •  
5.
  • Kong, Xiangrui, et al. (författare)
  • Water Accommodation on Ice and Organic Surfaces: Insights from Environmental Molecular Beam Experiments
  • 2014
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 118:47, s. 13378-13386
  • Tidskriftsartikel (refereegranskat)abstract
    • Water uptake on aerosol and cloud particles in the atmosphere modifies their chemistry and microphysics with important implications for climate on Earth. Here, we apply an environmental molecular beam (EMB) method to characterize water accommodation on ice and organic surfaces. The adsorption of surface-active compounds including short-chain alcohols, nitric acid, and acetic acid significantly affects accommodation of D2O on ice. n-Hexanol and n-butanol adlayers reduce water uptake by facilitating rapid desorption and function as inefficient barriers for accommodation as well as desorption of water, while the effect of adsorbed methanol is small. Water accommodation is close to unity on nitric-acid- and acetic-acid-covered ice, and accommodation is significantly more efficient than that on the bare ice surface. Water uptake is inefficient on solid alcohols and acetic acid but strongly enhanced on liquid phases including a quasi-liquid layer on solid n-butanol. The EMB method provides unique information on accommodation and rapid kinetics on volatile surfaces, and these studies suggest that adsorbed organic and acidic compounds need to be taken into account when describing water at environmental interfaces.
  •  
6.
  • Niu, Z. C., et al. (författare)
  • One-year measurement of organic and elemental carbon in size-segregated atmospheric aerosol at a coastal and suburban site in Southeast China
  • 2012
  • Ingår i: Journal of Environmental Monitoring. - : Royal Society of Chemistry (RSC). - 1464-0325 .- 1464-0333. ; 14:11, s. 2961-2967
  • Tidskriftsartikel (refereegranskat)abstract
    • To understand the influence of the urbanization process on the air quality in the urban neighbourhood area, the size distribution and seasonal variations of elemental and organic carbon in aerosols were studied at a coastal and suburban site in Xiamen City, China. A total of 87 samples were obtained during the one-year measurement campaign from June 2009 to May 2010. The results indicated that 79.3 +/- 3.2% of the organic carbon (OC) and 88.3 +/- 1.7% of the elemental carbon (EC) were associated with fine particles (PM2.5), which consist of 32.0 +/- 8.3% of the total carbonaceous aerosol (TCA). The concentrations of the OC and EC in PM2.5 were 17.8 +/- 11.2 and 3.8 +/- 1.9 mu g m(-3), respectively, and high concentrations were usually observed when the wind direction was northeast (NE). High OC/EC ratios (average 5.1) in PM2.5 indicated the formation of secondary organic carbon (SOC), which contributed 60.0% to the OC and 11.0% to the particulate matter. At this site, SOC had a significant negative correlation with the temperature (R-2 = 0.42), and a favorable meteorological condition for SOC formation was found in the wintertime. The OC/EC ratios increased with particle size, while the fractions of the carbonaceous aerosols to particulate matter decreased. OC, EC and SOC concentrations and OC/EC ratios followed the same seasonal pattern of winter > spring > autumn > summer, which mainly resulted from the various origins of the air masses in different seasons. This study indicates the requirement for mitigating the pollution of carbonaceous aerosol at this coastal and suburban area in Xiamen City.
  •  
7.
  • Niu, Z. C., et al. (författare)
  • The linear accumulation of atmospheric mercury by vegetable and grass leaves: Potential biomonitors for atmospheric mercury pollution
  • 2013
  • Ingår i: Environmental Science and Pollution Research. - : Springer Science and Business Media LLC. - 0944-1344 .- 1614-7499. ; 20:9, s. 6337-6343
  • Tidskriftsartikel (refereegranskat)abstract
    • One question in the use of plants as biomonitors for atmospheric mercury (Hg) is to confirm the linear relationships of Hg concentrations between air and leaves. To explore the origin of Hg in the vegetable and grass leaves, open top chambers (OTCs) experiment was conducted to study the relationships of Hg concentrations between air and leaves of lettuce (Lactuca sativa L.), radish (Raphanus sativus L.), alfalfa (Medicago sativa L.) and ryegrass (Lolium perenne L.). The influence of Hg in soil on Hg accumulation in leaves was studied simultaneously by soil Hg-enriched experiment. Hg concentrations in grass and vegetable leaves and roots were measured in both experiments. Results from OTCs experiment showed that Hg concentrations in leaves of the four species were significantly positively correlated with those in air during the growth time (p < 0.05), while results from soil Hg-enriched experiment indicated that soil-borne Hg had significant influence on Hg accumulation in the roots of each plant (p < 0.05), and some influence on vegetable leaves (p < 0.05), but no significant influence on Hg accumulation in grass leaves (p > 0.05). Thus, Hg in grass leaves is mainly originated from the atmosphere, and grass leaves are more suitable as potential biomonitors for atmospheric Hg pollution. The effect detection limits (EDLs) for the leaves of alfalfa and ryegrass were 15.1 and 22.2 ng g(-1), respectively, and the biological detection limit (BDL) for alfalfa and ryegrass was 3.4 ng m(-3).
  •  
8.
  • Papagiannakopoulos, Panos, et al. (författare)
  • Surface Transformations and Water Uptake on Liquid and Solid Butanol near the Melting Temperature
  • 2013
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 117:13, s. 6678-6685
  • Tidskriftsartikel (refereegranskat)abstract
    • Water interactions with organic surfaces are of central importance in biological systems and many Earth system processes. Here we describe experimental studies of water collisions and uptake kinetics on liquid and solid butanol from 160 to 200 K. Hyperthermal D2O molecules (0.32 eV) undergo efficient trapping on both solid and liquid butanol, and only a minor fraction scatters inelastically after an 80% loss of kinetic energy to surface modes. Trapped molecules either desorb within a few ms, or are taken up by the butanol phase during longer times. The water uptake and surface residence time increase with temperature above 180 K indicating melting of the butanol surface 4.5 K below the bulk melting temperature. Water uptake changes gradually across the melting point and trapped molecules are rapidly lost by diffusion into the liquid above 190 K. This indicates that liquid butanol maintains a surface phase with limited water permeability up to 5.5 K above the melting point. These surface observations are indicative of an incremental change from solid to liquid butanol over a range of 10 K straddling the bulk melting temperature, in contrast to the behavior of bulk butanol and previously studied materials.
  •  
9.
  • Papagiannakopoulos, Panos, et al. (författare)
  • Water Interactions with Acetic Acid Layers on Ice and Graphite
  • 2014
  • Ingår i: Journal of Physical Chemistry B. - : American Chemical Society (ACS). - 1520-6106 .- 1520-5207. ; 118:47, s. 13333-13340
  • Tidskriftsartikel (refereegranskat)abstract
    • Adsorbed organic compounds modify the properties of environmental interfaces with potential implications for many Earth system processes. Here, we describe experimental studies of water interactions with acetic acid (AcOH) layers on ice and graphite surfaces at temperatures from 186 to 200 K. Hyperthermal D2O water molecules are efficiently trapped on all of the investigated surfaces, with only a minor fraction that scatters inelastically after an 80% loss of kinetic energy to surface modes. Trapped molecules desorb rapidly from both mu m-thick solid AcOH and AcOH monolayers on graphite, indicating that water has limited opportunities to form hydrogen bonds with these surfaces. In contrast, trapped water molecules bind efficiently to AcOH-covered ice and remain on the surface on the observational time scale of the experiments (60 ms). Thus, adsorbed AcOH is observed to have a significant impact on waterice surface properties and to enhance the water accommodation coefficient compared to bare ice surfaces. The mechanism for increased water uptake and the implications for atmospheric cloud processes are discussed.
  •  
10.
  • Thomson, Erik S, et al. (författare)
  • Collision Dynamics and Solvation of Water Molecules in a Liquid Methanol Film
  • 2011
  • Ingår i: Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 2:17, s. 2174-2178
  • Tidskriftsartikel (refereegranskat)abstract
    • Environmental molecular beam experiments are used to examine water interactions with liquid methanol films at temperatures from 170 to 190 K. We find that water molecules with 0.32 eV incident kinetic energy are efficiently trapped by the liquid methanol. The scattering process is characterized by an efficient loss of energy to surface modes with a minor component of the incident beam that is inelastically scattered. Thermal desorption of water molecules has a well characterized Arrhenius form with an activation energy of 0.47 ± 0.11 eV and pre-exponential factor of 4.6 × 10^(15±3) s^(–1). We also observe a temperature-dependent incorporation of incident water into the methanol layer. The implication for fundamental studies and environmental applications is that even an alcohol as simple as methanol can exhibit complex and temperature-dependent surfactant behavior.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy