SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kovac'evic M.) srt2:(2019)"

Sökning: WFRF:(Kovac'evic M.) > (2019)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Ajello, M., et al. (författare)
  • Bright Gamma-Ray Flares Observed in GRB 131108A
  • 2019
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics (IOP). - 2041-8205 .- 2041-8213. ; 886:2
  • Tidskriftsartikel (refereegranskat)abstract
    • GRB 131108A is a bright long gamma-ray burst (GRB) detected by the Large Area Telescope and the Gamma-ray Burst Monitor on board the Fermi Gamma-ray Space Telescope. Dedicated temporal and spectral analyses reveal three ?-ray flares dominating above 100 MeV, which are not directly related to the prompt emission in the Gamma-ray Burst Monitor band (10 keV?10 MeV). The high-energy light curve of GRB 131108A (100 MeV?10 GeV) shows an unusual evolution: a steep decay, followed by three flares with an underlying emission, and then a long-lasting decay phase. The detailed analysis of the ?-ray flares finds that the three flares are 6?20 times brighter than the underlying emission and are similar to each other. The fluence of each flare, (1.6?2.0)10(?6) erg cm(?2), is comparable to that of emission during the steep decay phase, 1.710(?6) erg cm(?2). The total fluence from three ?-ray flares is 5.310(?6) erg cm(?2). The three ?-ray flares show properties similar to the usual X-ray flares that are sharp flux increases, occurring in ?50% of afterglows, in some cases well after the prompt emission. Also, the temporal and spectral indices during the early steep decay phase and the decaying phase of each flare show the consistency with a relation of the curvature effect (
  •  
3.
  • Bensi, M., et al. (författare)
  • Deep flow variability offshore south-west Svalbard (fram strait)
  • 2019
  • Ingår i: Water. - : MDPI AG. - 2073-4441. ; 11:4
  • Tidskriftsartikel (refereegranskat)abstract
    • - Water mass generation and mixing in the eastern Fram Strait are strongly influenced by the interaction between Atlantic and Arctic waters and by the local atmospheric forcing, which produce dense water that substantially contributes to maintaining the global thermohaline circulation. The West Spitsbergen margin is an ideal area to study such processes. Hence, in order to investigate the deep flow variability on short-term, seasonal, and multiannual timescales, two moorings were deployed at ~1040 m depth on the southwest Spitsbergen continental slope. We present and discuss time series data collected between June 2014 and June 2016. They reveal thermohaline and current fluctuations that were largest from October to April, when the deep layer, typically occupied by Norwegian Sea Deep Water, was perturbed by sporadic intrusions of warmer, saltier, and less dense water. Surprisingly, the observed anomalies occurred quasi-simultaneously at both sites, despite their distance (~170 km). We argue that these anomalies may arise mainly by the effect of topographically trapped waves excited and modulated by atmospheric forcing. Propagation of internal waves causes a change in the vertical distribution of the Atlantic water, which can reach deep layers. During such events, strong currents typically precede thermohaline variations without significant changes in turbidity. However, turbidity increases during April-June in concomitance with enhanced downslope currents. Since prolonged injections of warm water within the deep layer could lead to a progressive reduction of the density of the abyssal water moving toward the Arctic Ocean, understanding the interplay between shelf, slope, and deep waters along the west Spitsbergen margin could be crucial for making projections on future changes in the global thermohaline circulation. © 2019 by the authors.
  •  
4.
  • Galván, Ignacio Fdez., et al. (författare)
  • OpenMolcas : From Source Code to Insight
  • 2019
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 15:11, s. 5925-5964
  • Tidskriftsartikel (refereegranskat)abstract
    • In this Article we describe the OpenMolcas environment and invite the computational chemistry community to collaborate. The open-source project already includes a large number of new developments realized during the transition from the commercial MOLCAS product to the open-source platform. The paper initially describes the technical details of the new software development platform. This is followed by brief presentations of many new methods, implementations, and features of the OpenMolcas program suite. These developments include novel wave function methods such as stochastic complete active space self-consistent field, density matrix renormalization group (DMRG) methods, and hybrid multiconfigurational wave function and density functional theory models. Some of these implementations include an array of additional options and functionalities. The paper proceeds and describes developments related to explorations of potential energy surfaces. Here we present methods for the optimization of conical intersections, the simulation of adiabatic and nonadiabatic molecular dynamics, and interfaces to tools for semiclassical and quantum mechanical nuclear dynamics. Furthermore, the Article describes features unique to simulations of spectroscopic and magnetic phenomena such as the exact semiclassical description of the interaction between light and matter, various X-ray processes, magnetic circular dichroism, and properties. Finally, the paper describes a number of built-in and add-on features to support the OpenMolcas platform with postcalculation analysis and visualization, a multiscale simulation option using frozen-density embedding theory, and new electronic and muonic basis sets.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy