SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kozlova Elena N.) srt2:(2000-2004)"

Sökning: WFRF:(Kozlova Elena N.) > (2000-2004)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Aldskogius, Håkan, et al. (författare)
  • Strategies for repair of the deafferented spinal cord
  • 2002
  • Ingår i: Brain Research Reviews. - 0165-0173 .- 1872-6321. ; 40:1-3, s. 301-308
  • Tidskriftsartikel (refereegranskat)abstract
    • Deafferentation of the spinal cord by interruption of the sensory fibers in the dorsal roots highlights the problem of regeneration failure in the central nervous system. The injured dorsal root axons regenerate steadily, albeit slowly, in the peripheral compartment of the dorsal root, but abruptly cease to elongate when confronted with the interface between the peripheral and central nervous system, the dorsal root transitional zone (DRTZ). The glial cells of the CNS and their products together form this regeneration barrier. Recent years have witnessed several successful approaches to, at least in part, overcome this barrier. Particularly promising results have been obtained by (1). the replacement of adult non-regenerating dorsal root ganglion neurons with corresponding cells from embryonic or fetal donors, (2). the implantation of olfactory ensheathing cells at the DRTZ, and (3). immediate intrathecal infusion of growth factors to which dorsal root ganglion cells respond. In all these instances, growth of sensory axons into the adult spinal cord, as well as return of spinal cord connectivity, have been demonstrated. These findings suggest routes towards treatment strategies for plexus avulsion, and contribute to our understanding of possibilities to overcome regeneration failure in the spinal cord.
  •  
3.
  •  
4.
  •  
5.
  • Levinsson, Anders, et al. (författare)
  • Functional connections are established in the deafferented rat spinal cord by peripherally transplanted human embryonic sensory neurons
  • 2000
  • Ingår i: European Journal of Neuroscience. - : Wiley. - 0953-816X .- 1460-9568. ; 12:10, s. 3589-3595
  • Tidskriftsartikel (refereegranskat)abstract
    • Functionally useful repair of the mature spinal cord following injury requires axon growth and the re-establishment of specific synaptic connections. We have shown previously that axons from peripherally grafted human embryonic dorsal root ganglion cells grow for long distances in adult host rat dorsal roots, traverse the interface between the peripheral and central nervous system, and enter the spinal cord to arborize in the dorsal horn. Here we show that these transplants mediate synaptic activity in the host spinal cord. Dorsal root ganglia from human embryonic donors were transplanted in place of native adult rat ganglia. Two to three months after transplantation the recipient rats were examined anatomically and physiologically. Human fibres labelled with a human-specific axon marker were distributed in superficial as well as deep laminae of the recipient rat spinal cord. About 36% of the grafted neurons were double labelled following injections of the fluorescent tracers MiniRuby into the sciatic and Fluoro-Gold into the lower lumbar spinal cord, indicating that some of the grafted neurons had grown processes into the spinal cord as well as towards the denervated peripheral targets. Electrophysiological recordings demonstrated that the transplanted human dorsal roots conducted impulses that evoked postsynaptic activity in dorsal horn neurons and polysynaptic reflexes in ipsilateral ventral roots. The time course of the synaptic activation indicated that the human fibres were non-myelinated or thinly myelinated. Our findings show that growing human sensory nerve fibres which enter the adult deafferentated rat spinal cord become anatomically and physiologically integrated into functional spinal circuits.
  •  
6.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy