SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kraemer Benjamin M.) srt2:(2020-2024)"

Sökning: WFRF:(Kraemer Benjamin M.) > (2020-2024)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sbarra, AN, et al. (författare)
  • Mapping routine measles vaccination in low- and middle-income countries
  • 2021
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 589:7842, s. 415-
  • Tidskriftsartikel (refereegranskat)abstract
    • The safe, highly effective measles vaccine has been recommended globally since 1974, yet in 2017 there were more than 17 million cases of measles and 83,400 deaths in children under 5 years old, and more than 99% of both occurred in low- and middle-income countries (LMICs)1–4. Globally comparable, annual, local estimates of routine first-dose measles-containing vaccine (MCV1) coverage are critical for understanding geographically precise immunity patterns, progress towards the targets of the Global Vaccine Action Plan (GVAP), and high-risk areas amid disruptions to vaccination programmes caused by coronavirus disease 2019 (COVID-19)5–8. Here we generated annual estimates of routine childhood MCV1 coverage at 5 × 5-km2pixel and second administrative levels from 2000 to 2019 in 101 LMICs, quantified geographical inequality and assessed vaccination status by geographical remoteness. After widespread MCV1 gains from 2000 to 2010, coverage regressed in more than half of the districts between 2010 and 2019, leaving many LMICs far from the GVAP goal of 80% coverage in all districts by 2019. MCV1 coverage was lower in rural than in urban locations, although a larger proportion of unvaccinated children overall lived in urban locations; strategies to provide essential vaccination services should address both geographical contexts. These results provide a tool for decision-makers to strengthen routine MCV1 immunization programmes and provide equitable disease protection for all children.
  •  
2.
  • Pilla, Rachel M., et al. (författare)
  • Global data set of long-term summertime vertical temperature profiles in 153 lakes
  • 2021
  • Ingår i: Scientific Data. - : Springer Nature. - 2052-4463. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change.
  •  
3.
  • Pilla, Rachel M., et al. (författare)
  • Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Globally, lake surface water temperatures have warmed rapidly relative to air temperatures, but changes in deepwater temperatures and vertical thermal structure are still largely unknown. We have compiled the most comprehensive data set to date of long-term (1970–2009) summertime vertical temperature profiles in lakes across the world to examine trends and drivers of whole-lake vertical thermal structure. We found significant increases in surface water temperatures across lakes at an average rate of + 0.37 °C decade−1, comparable to changes reported previously for other lakes, and similarly consistent trends of increasing water column stability (+ 0.08 kg m−3 decade−1). In contrast, however, deepwater temperature trends showed little change on average (+ 0.06 °C decade−1), but had high variability across lakes, with trends in individual lakes ranging from − 0.68 °C decade−1 to + 0.65 °C decade−1. The variability in deepwater temperature trends was not explained by trends in either surface water temperatures or thermal stability within lakes, and only 8.4% was explained by lake thermal region or local lake characteristics in a random forest analysis. These findings suggest that external drivers beyond our tested lake characteristics are important in explaining long-term trends in thermal structure, such as local to regional climate patterns or additional external anthropogenic influences.
  •  
4.
  • Jane, Stephen F., et al. (författare)
  • Widespread deoxygenation of temperate lakes
  • 2021
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 594:7861, s. 66-70
  • Tidskriftsartikel (refereegranskat)abstract
    • The concentration of dissolved oxygen in aquatic systems helps to regulate biodiversity(1,2), nutrient biogeochemistry(3), greenhouse gas emissions(4), and the quality of drinking water(5). The long-term declines in dissolved oxygen concentrations in coastal and ocean waters have been linked to climate warming and human activity(6,7), but little is known about the changes in dissolved oxygen concentrations in lakes. Although the solubility of dissolved oxygen decreases with increasing water temperatures, long-term lake trajectories are difficult to predict. Oxygen losses in warming lakes may be amplified by enhanced decomposition and stronger thermal stratification(8,9) or oxygen may increase as a result of enhanced primary production(10). Here we analyse a combined total of 45,148 dissolved oxygen and temperature profiles and calculate trends for 393 temperate lakes that span 1941 to 2017. We find that a decline in dissolved oxygen is widespread in surface and deep-water habitats. The decline in surface waters is primarily associated with reduced solubility under warmer water temperatures, although dissolved oxygen in surface waters increased in a subset of highly productive warming lakes, probably owing to increasing production of phytoplankton. By contrast, the decline in deep waters is associated with stronger thermal stratification and loss of water clarity, but not with changes in gas solubility. Our results suggest that climate change and declining water clarity have altered the physical and chemical environment of lakes. Declines in dissolved oxygen in freshwater are 2.75 to 9.3 times greater than observed in the world's oceans(6,7) and could threaten essential lake ecosystem services(2,3,5,11).
  •  
5.
  • Kraemer, Benjamin M., et al. (författare)
  • Climate change drives widespread shifts in lake thermal habitat
  • 2021
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 11:6, s. 521-529
  • Tidskriftsartikel (refereegranskat)abstract
    • Lake surfaces are warming worldwide, raising concerns about lake organism responses to thermal habitat changes. Species may cope with temperature increases by shifting their seasonality or their depth to track suitable thermal habitats, but these responses may be constrained by ecological interactions, life histories or limiting resources. Here we use 32 million temperature measurements from 139 lakes to quantify thermal habitat change (percentage of non-overlap) and assess how this change is exacerbated by potential habitat constraints. Long-term temperature change resulted in an average 6.2% non-overlap between thermal habitats in baseline (1978-1995) and recent (1996-2013) time periods, with non-overlap increasing to 19.4% on average when habitats were restricted by season and depth. Tropical lakes exhibited substantially higher thermal non-overlap compared with lakes at other latitudes. Lakes with high thermal habitat change coincided with those having numerous endemic species, suggesting that conservation actions should consider thermal habitat change to preserve lake biodiversity. Using measurements from 139 global lakes, the authors demonstrate how long-term thermal habitat change in lakes is exacerbated by species' seasonal and depth-related constraints. They further reveal higher change in tropical lakes, and those with high biodiversity and endemism.
  •  
6.
  • Golub, Malgorzata, et al. (författare)
  • A framework for ensemble modelling of climate change impacts on lakes worldwide : the ISIMIP Lake Sector
  • 2022
  • Ingår i: Geoscientific Model Development. - : Copernicus Publications. - 1991-959X .- 1991-9603. ; 15:11, s. 4597-4623
  • Tidskriftsartikel (refereegranskat)abstract
    • Empirical evidence demonstrates that lakes and reservoirs are warming across the globe. Consequently, there is an increased need to project future changes in lake thermal structure and resulting changes in lake biogeochemistry in order to plan for the likely impacts. Previous studies of the impacts of climate change on lakes have often relied on a single model forced with limited scenario-driven projections of future climate for a relatively small number of lakes. As a result, our understanding of the effects of climate change on lakes is fragmentary, based on scattered studies using different data sources and modelling protocols, and mainly focused on individual lakes or lake regions. This has precluded identification of the main impacts of climate change on lakes at global and regional scales and has likely contributed to the lack of lake water quality considerations in policy-relevant documents, such as the Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC). Here, we describe a simulation protocol developed by the Lake Sector of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) for simulating climate change impacts on lakes using an ensemble of lake models and climate change scenarios for ISIMIP phases 2 and 3. The protocol prescribes lake simulations driven by climate forcing from gridded observations and different Earth system models under various representative greenhouse gas concentration pathways (RCPs), all consistently bias-corrected on a 0.5 degrees x 0.5 degrees global grid. In ISIMIP phase 2, 11 lake models were forced with these data to project the thermal structure of 62 well-studied lakes where data were available for calibration under historical conditions, and using uncalibrated models for 17 500 lakes defined for all global grid cells containing lakes. In ISIMIP phase 3, this approach was expanded to consider more lakes, more models, and more processes. The ISIMIP Lake Sector is the largest international effort to project future water temperature, thermal structure, and ice phenology of lakes at local and global scales and paves the way for future simulations of the impacts of climate change on water quality and biogeochemistry in lakes.
  •  
7.
  • Jansen, Joachim, 1989-, et al. (författare)
  • Global increase in methane production under future warming of lake bottom waters
  • 2022
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 28:18, s. 5427-5440
  • Tidskriftsartikel (refereegranskat)abstract
    • Lakes are significant emitters of methane to the atmosphere, and thus are important components of the global methane budget. Methane is typically produced in lake sediments, with the rate of methane production being strongly temperature dependent. Local and regional studies highlight the risk of increasing methane production under future climate change, but a global estimate is not currently available. Here, we project changes in global lake bottom temperatures and sediment methane production rates from 1901 to 2099. By the end of the 21st century, lake bottom temperatures are projected to increase globally, by an average of 0.86-2.60 degrees C under Representative Concentration Pathways (RCPs) 2.6-8.5, with greater warming projected at lower latitudes. This future warming of bottom waters will likely result in an increase in methane production rates of 13%-40% by the end of the century, with many low-latitude lakes experiencing an increase of up to 17 times the historical (1970-1999) global average under RCP 8.5. The projected increase in methane production will likely lead to higher emissions from lakes, although the exact magnitude of the emission increase requires more detailed regional studies.
  •  
8.
  • Munteanu, Catalina, et al. (författare)
  • The potential of historical spy-satellite imagery to support research in ecology and conservation
  • 2024
  • Ingår i: BioScience. - : Oxford University Press. - 0006-3568 .- 1525-3244. ; 74:3, s. 159-168
  • Forskningsöversikt (refereegranskat)abstract
    • Remote sensing data are important for assessing ecological change, but their value is often restricted by their limited temporal coverage. Major historical events that affected the environment, such as those associated with colonial history, World War II, or the Green Revolution are not captured by modern remote sensing. In the present article, we highlight the potential of globally available black-and-white satellite photographs to expand ecological and conservation assessments back to the 1960s and to illuminate ecological concepts such as shifting baselines, time-lag responses, and legacy effects. This historical satellite photography can be used to monitor ecosystem extent and structure, species' populations and habitats, and human pressures on the environment. Even though the data were declassified decades ago, their use in ecology and conservation remains limited. But recent advances in image processing and analysis can now unlock this research resource. We encourage the use of this opportunity to address important ecological and conservation questions.
  •  
9.
  • Thayne, Michael W., et al. (författare)
  • Antecedent lake conditions shape resistance and resilience of a shallow lake ecosystem following extreme wind storms
  • 2022
  • Ingår i: Limnology and Oceanography. - : John Wiley & Sons. - 0024-3590 .- 1939-5590. ; 67:S1
  • Tidskriftsartikel (refereegranskat)abstract
    • Extreme wind storms can strongly influence short-term variation in lake ecosystem functioning. Climate change is affecting storms by altering their frequency, duration, and intensity, which may have consequences for lake ecosystem resistance and resilience. However, catchment and lake processes are simultaneously affecting antecedent lake conditions which may shape the resistance and resilience landscape prior to storm exposure. To determine whether storm characteristics or antecedent lake conditions are more important for explaining variation in lake ecosystem resistance and resilience, we analyzed the effects of 25 extreme wind storms on various biological and physiochemical variables in a shallow lake. Using boosted regression trees to model observed variation in resistance and resilience, we found that antecedent lake conditions were more important (relative importance = 67%) than storm characteristics (relative importance = 33%) in explaining variation in lake ecosystem resistance and resilience. The most important antecedent lake conditions were turbidity, Schmidt stability, %O2 saturation, light conditions, and soluble reactive silica concentrations. We found that storm characteristics were all similar in their relative importance and results suggest that resistance and resilience decrease with increasing duration, mean precipitation, shear stress intensity, and time between storms. In addition, we found that antagonistic or opposing effects between the biological and physiochemical variables influence the overall resistance and resilience of the lake ecosystem under specific lake and storm conditions. The extent to which these results apply to the resistance and resilience of different lake ecosystems remains an important area for inquiry.
  •  
10.
  • Thayne, Michael W., et al. (författare)
  • Lake surface water temperature and oxygen saturation resistance and resilience following extreme storms : Chlorophyll a shapes resistance toward storms
  • 2023
  • Ingår i: Inland Waters. - : Taylor & Francis Group. - 2044-2041 .- 2044-205X. ; , s. 1-53
  • Tidskriftsartikel (refereegranskat)abstract
    • Extreme storms are becoming more frequent and intense with climate change. Assessing lake ecosystem responses to extreme storms (resistance) and their capacity to recover (resilience) is critical for predicting the future of lake ecosystems in a stormier world. Here we provide a systematic, standardized and quantitative approach for identifying critical processes shaping lake ecosystem resistance following extreme storms. We identified 576 extreme wind storms for eight lakes in Europe and North America. We calculated the resistance and resilience of each lake’s surface water temperature and oxygen saturation following each storm. Sharp decreases and increases in epilimnetic temperature and oxygen saturation caused by extreme storms resulted in unpredictable changes in lake resilience values across lakes, with a tendency not to return to pre-storm conditions. Resistance was primarily shaped by mean annual chlorophyll a concentration and its overall relationship with other physiochemical lake and storm characteristics. We modeled variation in resistance as a function of both lake and storm conditions, and the results suggested that eutrophic lakes were consistently less resistant to extreme storms when compared to oligotrophic lakes. The lakes tended to be most resistant towards extreme storms when antecedent surface waters were warm and oxygen saturated, but overall resistance was highest in lakes with low concentrations of mean annual chlorophyll a and total phosphorus. Our findings suggest physiochemical responses of lakes to meteorological forcing is shaped by ecological and/or physical feedbacks and processes that determine trophic state, such as the influence of differences in nutrient availability and algal growth.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy