SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Krause H) srt2:(2000-2004)"

Sökning: WFRF:(Krause H) > (2000-2004)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Moss, B, et al. (författare)
  • The determination of ecological status in shallow lakes - a tested system (ECOFRAME) for implementation of the European Water Framework Directive
  • 2003
  • Ingår i: Aquatic Conservation: Marine and Freshwater Ecosystems. - : Wiley. - 1052-7613. ; 13:6, s. 507-549
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. The European Water Framework Directive requires the determination of ecological status in European fresh and saline waters. This is to be through the establishment of a typology of surface water bodies, the determination of reference (high status) conditions in each element (ecotype) of the typology and of lower grades of status (good, moderate, poor and bad) for each ecotype. It then requires classification of the status of the water bodies and their restoration to at least 'good status' in a specified period. 2. Though there are many methods for assessing water quality, none has the scope of that defined in the Directive. The provisions of the Directive require a wide range of variables to be measured and give only general guidance as to how systems of classification should be established. This raises issues of comparability across States and of the costs of making the determinations. 3. Using expert workshops and subsequent field testing, a practicable pan-European typology and classification system has been developed for shallow lakes, which can easily be extended to all lakes. It is parsimonious in its choice of determinands, but based on current limnological understanding and therefore as cost-effective as possible. 4. A core typology is described, which can be expanded easily in particular States to meet local conditions. The core includes 48 ecotypes across the entire European climate gradient and incorporates climate, lake area, geology of the catchment and conductivity. 5. The classification system is founded on a liberal interpretation of Annexes in the Directive and uses variables that are inexpensive to measure and ecologically relevant. The need for taxonomic expertise is minimized. 6. The scheme has been through eight iterations, two of which were tested in the field on tranches of 66 lakes. The final version, Version 8, is offered for operational testing and further refinement by statutory authorities.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Ladanyi, Marc, et al. (författare)
  • The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25
  • 2001
  • Ingår i: Oncogene. - : Springer Science and Business Media LLC. - 1476-5594 .- 0950-9232. ; 20:1, s. 48-57
  • Tidskriftsartikel (refereegranskat)abstract
    • Alveolar soft part sarcoma (ASPS) is an unusual tumor with highly characteristic histopathology and ultrastructure, controversial histogenesis, and enigmatic clinical behavior. Recent cytogenetic studies have identified a recurrent der(17) due to a non-reciprocal t(X;17)(p11.2;q25) in this sarcoma. To define the interval containing the Xp11.2 break, we first performed FISH on ASPS cases using YAC probes for OATL1 (Xp11.23) and OATL2 (Xp11.21), and cosmid probes from the intervening genomic region. This localized the breakpoint to a 160 kb interval. The prime candidate within this previously fully sequenced region was TFE3, a transcription factor gene known to be fused to translocation partners on 1 and X in some papillary renal cell carcinomas. Southern blotting using a TFE3 genomic probe identified non-germline bands in several ASPS cases, consistent with rearrangement and possible fusion of TFE3 with a gene on 17q25. Amplification of the 5' portion of cDNAs containing the 3' portion of TFE3 in two different ASPS cases identified a novel sequence, designated ASPL, fused in-frame to TFE3 exon 4 (type 1 fusion) or exon 3 (type 2 fusion). Reverse transcriptase PCR using a forward primer from ASPL and a TFE3 exon 4 reverse primer detected an ASPL-TFE3 fusion transcript in all ASPS cases (12/12: 9 type 1, 3 type 2), establishing the utility of this assay in the diagnosis of ASPS. Using appropriate primers, the reciprocal fusion transcript, TFE3-ASPL, was detected in only one of 12 cases, consistent with the non-reciprocal nature of the translocation in most cases, and supporting ASPL-TFE3 as its oncogenically significant fusion product. ASPL maps to chromosome 17, is ubiquitously expressed, and matches numerous ESTs (Unigene cluster Hs.84128) but no named genes. The ASPL cDNA open reading frame encodes a predicted protein of 476 amino acids that contains within its carboxy-terminal portion of a UBX-like domain that shows significant similarity to predicted proteins of unknown function in several model organisms. The ASPL-TFE3 fusion replaces the N-terminal portion of TFE3 by the fused ASPL sequences, while retaining the TFE3 DNA-binding domain, implicating transcriptional deregulation in the pathogenesis of this tumor, consistent with the biology of several other translocation-associated sarcomas.
  •  
6.
  • Margolis, Russell L, et al. (författare)
  • Huntington's Disease-like 2 (HDL2) in North America and Japan.
  • 2004
  • Ingår i: Annals of Neurology. - : Wiley. - 0364-5134 .- 1531-8249. ; 56:5, s. 670-4
  • Tidskriftsartikel (refereegranskat)abstract
    • Huntington's Disease-like 2 (HDL2) is a progressive, autosomal dominant, neurodegenerative disorder with marked clinical and pathological similarities to Huntington's disease (HD). The causal mutation is a CTG/CAG expansion mutation on chromosome 16q24.3, in a variably spliced exon of junctophilin-3. The frequency of HDL2 was determined in nine independent series of patients referred for HD testing or selected for the presence of an HD-like phenotype in North America or Japan. The repeat length, ancestry, and age of onset of all North American HDL2 cases were determined. The results show that HDL2 is very rare, with a frequency of 0 to 15% among patients in the nine case series with an HD-like presentation who do not have the HD mutation. HDL2 is predominantly, and perhaps exclusively, found in individuals of African ancestry. Repeat expansions ranged from 44 to 57 triplets, with length instability in maternal transmission detected in a repeat of r2=0.29, p=0.0098). The results further support the evidence that the repeat expansion at the chromosome 16q24.3 locus is the direct cause of HDL2 and provide preliminary guidelines for the genetic testing of patients with an HD-like phenotype.
  •  
7.
  • Ristow, M, et al. (författare)
  • Frataxin deficiency in pancreatic islets causes diabetes due to loss of beta cell mass
  • 2003
  • Ingår i: Journal of Clinical Investigation. - 0021-9738. ; 112:4, s. 527-534
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetes is caused by an absolute (type 1) or relative (type 2) deficiency of insulin-producing beta cells. We have disrupted expression of the mitochondrial protein frataxin selectively in pancreatic beta cells. Mice were born healthy but subsequently developed impaired glucose tolerance progressing to overt diabetes mellitus. These observations were explained by impairment of insulin secretion due to a loss of beta cell mass in knockout animals. This phenotype was preceded by elevated levels of reactive oxygen species in knockout islets, an increased frequency of apoptosis, and a decreased number of proliferating beta cells. Hence, disruption of the frataxin gene in pancreatic beta cells causes diabetes following cellular growth arrest and apoptosis, paralleled by an increase in reactive oxygen species in islets. These observations might provide insight into the deterioration of beta cell function observed in different subtypes of diabetes in humans.
  •  
8.
  • Ristow, Michael, et al. (författare)
  • Frataxin deficiency in pancreatic islets causes diabetes due to loss of β cell mass
  • 2003
  • Ingår i: Journal of Clinical Investigation. - 0021-9738. ; 112:4, s. 527-534
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetes is caused by an absolute (type 1) or relative (type 2) deficiency of insulin-producing β cells. We have disrupted expression of the mitochondrial protein frataxin selectively in pancreatic β cells. Mice were born healthy but subsequently developed impaired glucose tolerance progressing to overt diabetes mellitus. These observations were explained by impairment of insulin secretion due to a loss of β cell mass in knockout animals. This phenotype was preceded by elevated levels of reactive oxygen species in knockout islets, an increased frequency of apoptosis, and a decreased number of proliferating β cells. Hence, disruption of the frataxin gene in pancreatic β cells causes diabetes following cellular growth arrest and apoptosis, paralleled by an increase in reactive oxygen species in islets. These observations might provide insight into the deterioration of β cell function observed in different subtypes of diabetes in humans.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy