SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Krejci Radovan) srt2:(2010-2014)"

Sökning: WFRF:(Krejci Radovan) > (2010-2014)

  • Resultat 1-10 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlm, Lars, 1976-, et al. (författare)
  • A comparison of dry and wet season aerosol number fluxes over the Amazon rain forest
  • 2010
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 10:6, s. 3063-3079
  • Tidskriftsartikel (refereegranskat)abstract
    • Vertical number fluxes of aerosol particles and vertical fluxes of CO2 were measured with the eddy covariance method at the top of a 53m high tower in the Amazon rain forest as part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia) experiment. The observed aerosol number fluxes included particles with sizes down to 10 nm in diameter. The measurements were carried out during the wet and dry season in 2008. In this study focus is on the dry season aerosol fluxes, with significant influence from biomass burning, and these are compared with aerosol fluxes measured during the wet season. Net particle deposition fluxes dominated in daytime in both seasons and the deposition flux was considerably larger in the dry season due to the much higher dry season particle concentration. The particle transfer velocity increased linearly with increasing friction velocity in both seasons. The difference in transfer velocity between the two seasons was small, indicating that the seasonal change in aerosol number size distribution is not enough for causing any significant change in deposition velocity. In general, particle transfer velocities in this study are low compared to studies over boreal forests. The reasons are probably the high percentage of accumulation mode particles and the low percentage of nucleation mode particles in the Amazon boundary layer, both in the dry and wet season, and low wind speeds in the tropics compared to the midlatitudes. In the dry season, nocturnal particle fluxes behaved very similar to the nocturnal CO2 fluxes. Throughout the night, the measured particle flux at the top of the tower was close to zero, but early in the morning there was an upward particle flux peak that is not likely a result of entrainment or local pollution. It is possible that these morning upward particle fluxes are associated with emission of primary biogenic particles from the rain forest. Emitted particles may be stored within the canopy during stable conditions at nighttime, similarly to CO2, and being released from the canopy when conditions become more turbulent in the morning.
  •  
2.
  • Ahlm, Lars, et al. (författare)
  • Emission and dry deposition of accumulation mode particles in the Amazon Basin
  • 2010
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 10:21, s. 10237-10253
  • Tidskriftsartikel (refereegranskat)abstract
    • Size-resolved vertical aerosol number fluxes of particles in the diameter range 0.25–2.5 μm were measured with the eddy covariance method from a 53 m high tower over the Amazon rain forest, 60 km NNW of Manaus, Brazil. This study focuses on data measured during the relatively clean wet season, but a shorter measurement period from the more polluted dry season is used as a comparison. Size-resolved net particle fluxes of the five lowest size bins, representing 0.25–0.45 μm in diameter, pointed downward in more or less all wind sectors in the wet season. This is an indication that the source of primary biogenic aerosol particles may be small in this particle size range. In the diameter range 0.5–2.5 μm, vertical particle fluxes were highly dependent on wind direction. In wind sectors where anthropogenic influence was low, net emission fluxes dominated. However, in wind sectors associated with higher anthropogenic influence, net deposition fluxes dominated. The net emission fluxes were interpreted as primary biogenic aerosol emission, but deposition of anthropogenic particles seems to have masked this emission in wind sectors with higher anthropogenic influence. The emission fluxes were at maximum in the afternoon when the mixed layer is well developed, and these emissions were best correlated with horizontal wind speed by the equation log10F=0.47·U+2.26 where F is the emission number flux of 0.5–2.5 μm particles [m−2s−1] and U is the horizontal wind speed [ms−1] at the top of the tower.
  •  
3.
  • Allen, G., et al. (författare)
  • South East Pacific atmospheric composition and variability sampled = ong 20 degrees S during VOCALS-REx
  • 2011
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 11:11, s. 5237-5262
  • Tidskriftsartikel (refereegranskat)abstract
    • The VAMOS Ocean-Cloud-Atmosphere-Land Regional Experiment (VOCALS-REx) was conducted from 15 October to 15 November 2008 in the South East Pacific (SEP) region to investigate interactions between land, sea and atmosphere in this unique tropical eastern ocean environment and to improve the skill of global and regional models in = presenting the region. This study synthesises selected aircraft, ship = d surface site observations from VOCALS-REx to statistically summarise = d characterise the atmospheric composition and variability of the = rine Boundary Layer (MBL) and Free Troposphere (FT) along the 20 = grees S parallel between 70 degrees W and 85 degrees W. Significant = nal gradients in mean MBL sub-micron aerosol particle size and = mposition, carbon monoxide, sulphur dioxide and ozone were seen over = e campaign, with a generally more variable and polluted coastal = vironment and a less variable, more pristine remote maritime regime. = adients in aerosol and trace gas concentrations were observed to be = sociated with strong gradients in cloud droplet number. The FT was = ten more polluted in terms of trace gases than the MBL in the mean; = wever increased variability in the FT composition suggests an episodic = ture to elevated concentrations. This is consistent with a complex = rtical interleaving of airmasses with diverse sources and hence = llutant concentrations as seen by generalised back trajectory = alysis, which suggests contributions from both local and long-range = urces. Furthermore, back trajectory analysis demonstrates that the = served zonal gradients both in the boundary layer and the free = oposphere are characteristic of marked changes in airmass history with = stance offshore - coastal boundary layer airmasses having been in = cent contact with the local land surface and remote maritime airmasses = ving resided over ocean for in excess of ten days. Boundary layer = mposition to the east of 75 degrees W was observed to be dominated by = astal emissions from sources to the west of the Andes, with evidence = r diurnal pumping of the Andean boundary layer above the height of the = rine capping inversion. Analysis of intra-campaign variability in = mospheric composition was not found to be significantly correlated = th observed low-frequency variability in the large scale flow pattern; = mpaign-average interquartile ranges of CO, SO(2) and O(3) = ncentrations at all longitudes were observed to dominate over much = aller differences in median concentrations calculated between periods = different flow regimes. The campaign climatology presented here aims = provide a valuable dataset to inform model simulation and future = ocess studies, particularly in the context of aerosol-cloud = teraction and further evaluation of dynamical processes in the SEP = gion for conditions analogous to those during VOCALS-REx. To this end, = r results are discussed in terms of coastal, transitional and remote = atial regimes in the MBL and FT and a gridded dataset are provided as = resource.
  •  
4.
  • Gonzalez, Nelida J. D., et al. (författare)
  • New method for resolving the enantiomeric composition of 2-methyltetrols in atmospheric organic aerosols
  • 2011
  • Ingår i: Journal of Chromatography A. - : Elsevier BV. - 0021-9673 .- 1873-3778. ; 1218:51, s. 9288-9294
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to facilitate the determination of the primary and secondary origin of atmospheric organic aerosols, a novel method involving chiral capillary gas chromatography coupled with mass spectrometry has been developed and validated. The method was focused on the analysis of 2-methylerythritol and 2-methylthreitol, considered to be tracers of secondary organic aerosols from the oxidation of atmospheric isoprene. The method was validated by performing various tests using authentic standards, including pure enantiomeric standards. The result showed that the analytical method itself does not affect the enantiomeric composition of the samples analyzed. The method was applied on atmospheric aerosols from a boreal forest collected in Aspvreten, Sweden and on laboratory samples obtained from liquid phase oxidation of isoprene and smog chamber experiments. Aerosol samples contained one enantiomer of 2-methylerythritol in significantly larger quantities than the others. In contrast, the liquid-phase oxidation of isoprene and its gas-phase oxidation in the smog chamber produced all enantiomers in equal quantities. The results obtained where the enantiomer fraction, EF, is larger than 0.50 suggest that 2-methyltetrols in atmospheric aerosols may also have biological origin. Information about the differences between enantiomer fractions obtained using this method brings new insights in the area of atmospheric aerosols.
  •  
5.
  • Gonzalez, N. J. D., et al. (författare)
  • Primary and secondary organics in the tropical Amazonian rainforest aerosols : chiral analysis of 2-methyltetraols
  • 2014
  • Ingår i: ENVIRON SCI-PROC IMP. - : Royal Society of Chemistry (RSC). - 2050-7887 .- 2050-7895. ; 16:6, s. 1413-1421
  • Tidskriftsartikel (refereegranskat)abstract
    • This work presents the application of a new method to facilitate the distinction between biologically produced (primary) and atmospherically produced (secondary) organic compounds in ambient aerosols based on their chirality. The compounds chosen for this analysis were the stereomers of 2-methyltetraols, (2R, 3S)- and (2S, 3R)-methylerythritol, (L- and D-form, respectively), and (2S, 3S)- and (2R, 3R)-methylthreitol (L- and D-form), shown previously to display some enantiomeric excesses in atmospheric aerosols, thus to have at least a partial biological origin. In this work PM10 aerosol fractions were collected in a remote tropical rainforest environment near Manaus, Brazil, between June 2008 and June 2009 and analysed. Both 2-methylerythritol and 2-methylthreitol displayed a net excess of one enantiomer (either the L- or the D-form) in 60 to 72% of these samples. These net enantiomeric excesses corresponded to compounds entirely biological but accounted for only about 5% of the total 2-methyltetrol mass in all the samples. Further analysis showed that, in addition, a large mass of the racemic fractions (equal mixtures of D- and L-forms) was also biological. Estimating the contribution of secondary reactions from the isomeric ratios measured in the samples (=ratios 2-methylthreitol over 2-methylerythritol), the mass fraction of secondary methyltetrols in these samples was estimated to a maximum of 31% and their primary fraction to a minimum of 69%. Such large primary fractions could have been expected in PM10 aerosols, largely influenced by biological emissions, and would now need to be investigated in finer aerosols. This work demonstrates the effectiveness of chiral and isomeric analyses as the first direct tool to assess the primary and secondary fractions of organic aerosols.
  •  
6.
  • Grythe, Henrik, et al. (författare)
  • A review of sea-spray aerosol source functions using a large global set of sea salt aerosol concentration measurements
  • 2014
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 14:3, s. 1277-1297
  • Tidskriftsartikel (refereegranskat)abstract
    • Sea-spray aerosols (SSA) are an important part of the climate system because of their effects on the global radiative budget - both directly as scatterers and absorbers of solar and terrestrial radiation, and indirectly as cloud condensation nuclei (CCN) influencing cloud formation, lifetime, and precipitation. In terms of their global mass, SSA have the largest uncertainty of all aerosols. In this study we review 21 SSA source functions from the literature, several of which are used in current climate models. In addition, we propose a new function. Even excluding outliers, the global annual SSA mass produced spans roughly 3-70 Pg yr(-1) for the different source functions, for particles with dry diameter D-p < 10 mu m, with relatively little interannual variability for a given function. The FLEXPART Lagrangian particle dispersion model was run in backward mode for a large global set of observed SSA concentrations, comprised of several station networks and ship cruise measurement campaigns. FLEXPART backward calculations produce gridded emission sensitivity fields, which can subsequently be multiplied with gridded SSA production fluxes in order to obtain modeled SSA concentrations. This allowed us to efficiently and simultaneously evaluate all 21 source functions against the measurements. Another advantage of this method is that source-region information on wind speed and sea surface temperatures (SSTs) could be stored and used for improving the SSA source function parameterizations. The best source functions reproduced as much as 70% of the observed SSA concentration variability at several stations, which is comparable with state of the art aerosol models. The main driver of SSA production is wind, and we found that the best fit to the observation data could be obtained when the SSA production is proportional to U-10(3.5), where U-10 is the source region averaged 10m wind speed. A strong influence of SST on SSA production, with higher temperatures leading to higher production, could be detected as well, although the underlying physical mechanisms of the SST influence remains unclear. Our new source function with wind speed and temperature dependence gives a global SSA production for particles smaller than D-p < 10 mu m of 9 Pg yr(-1), and is the best fit to the observed concentrations.
  •  
7.
  • Grythe, Henrik, 1980- (författare)
  • Primary Marine Aerosol : Validation of sea spray source functions using observations and transport modeling
  • 2014
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Sea spray aerosols (SSA) are an important part of the climate system through their effects on the global radiative budget, both directly as scatterers and absorbers of solar and terrestrial radiation, and indirectly as cloud condensation nuclei (CCN) influencing cloud formation, lifetime and precipitation. In terms of their global mass, SSA is the largest source and has the largest uncertainty of all aerosols. In this study I have reviewed 21 SSA source functions from the literature, several of which are used in current climate models, and as a result of this work  a new source function is proposed.The model FLEXPART was run in backward mode utilizing a large global set of observed SSA concentrations, comprised of several station networks and ship cruise measurement campaigns. FLEXPART backward calculations produce gridded emission sensitivity fields, which can subsequently be multiplied with gridded SSA production fluxes to obtain modeled SSA concentrations. This allows to efficiently evaluate all 21 source functions at the same time. Another advantage of this method is that source-region information on wind speed and sea surface temperatures (SSTs) could be stored and used for evaluating their influence on SSA production.The main driver of SSA production is wind, and the best fit to the observation data could be obtained when the SSA production is proportional to U103.5. A strong influence of SST on the production could be detected as well, although the underlying physical mechanisms of the SST influence remains unclear. For SST we obtain the best fit to the measurement data when SSA concentration is proportional to 0.031×T+0.39, where T is the source average SST. Based on the model source region average temperature and wind, an empirical fit was made to the data and a new source function obtained. The fit was made by using the model concentrations, observational data, ECMWF winds and the existing source function volume fluxes. Our new source function gives a global SSA production for particles smaller than 10μm of 9Pg yr-1 and is the best fit to the observed concentrations. The existing source functions display the large uncertainties, spanning from a global emitted mass of 1.9 to 100’s of Pg yr-1. Wind dependencies also range strongly and those far from U103.5, have poor correlation with observed values. It is also possible to add temperature dependence to an existing source function to come further towards observed values with the model results. Sea spray aerosols (SSA) are an important part of the climate system through their effects on the global radiative budget, both directly as scatterers and absorbers of solar and terrestrial radiation, and indirectly as cloud condensation nuclei (CCN) influencing cloud formation, lifetime and precipitation. In terms of their global mass, SSA is the largest source and has the largest uncertainty of all aerosols. In this study I have reviewed 21 SSA source functions from the literature, several of which are used in current climate models, and as a result of this work  a new source function is proposed.The model FLEXPART was run in backward mode utilizing a large global set of observed SSA concentrations, comprised of several station networks and ship cruise measurement campaigns. FLEXPART backward calculations produce gridded emission sensitivity fields, which can subsequently be multiplied with gridded SSA production fluxes to obtain modeled SSA concentrations. This allows to efficiently evaluate all 21 source functions at the same time. Another advantage of this method is that source-region information on wind speed and sea surface temperatures (SSTs) could be stored and used for evaluating their influence on SSA production.The main driver of SSA production is wind, and the best fit to the observation data could be obtained when the SSA production is proportional to U103.5. A strong influence of SST on the production could be detected as well, although the underlying physical mechanisms of the SST influence remains unclear. For SST we obtain the best fit to the measurement data when SSA concentration is proportional to 0.031×T+0.39, where T is the source average SST. Based on the model source region average temperature and wind, an empirical fit was made to the data and a new source function obtained. The fit was made by using the model concentrations, observational data, ECMWF winds and the existing source function volume fluxes. Our new source function gives a global SSA production for particles smaller than 10μm of 9Pg yr-1 and is the best fit to the observed concentrations. The existing source functions display the large uncertainties, spanning from a global emitted mass of 1.9 to 100’s of Pg yr-1. Wind dependencies also range strongly and those far from U103.5, have poor correlation with observed values. It is also possible to add temperature dependence to an existing source function to come further towards observed values with the model results.Sea spray aerosols (SSA) are an important part of the climate system through their effects on the global radiative budget, both directly as scatterers and absorbers of solar and terrestrial radiation, and indirectly as cloud condensation nuclei (CCN) influencing cloud formation, lifetime and precipitation. In terms of their global mass, SSA is the largest source and has the largest uncertainty of all aerosols. In this study I have reviewed 21 SSA source functions from the literature, several of which are used in current climate models, and as a result of this work  a new source function is proposed.The model FLEXPART was run in backward mode utilizing a large global set of observed SSA concentrations, comprised of several station networks and ship cruise measurement campaigns. FLEXPART backward calculations produce gridded emission sensitivity fields, which can subsequently be multiplied with gridded SSA production fluxes to obtain modeled SSA concentrations. This allows to efficiently evaluate all 21 source functions at the same time. Another advantage of this method is that source-region information on wind speed and sea surface temperatures (SSTs) could be stored and used for evaluating their influence on SSA production.The main driver of SSA production is wind, and the best fit to the observation data could be obtained when the SSA production is proportional to U103.5. A strong influence of SST on the production could be detected as well, although the underlying physical mechanisms of the SST influence remains unclear. For SST we obtain the best fit to the measurement data when SSA concentration is proportional to 0.031×T+0.39, where T is the source average SST. Based on the model source region average temperature and wind, an empirical fit was made to the data and a new source function obtained. The fit was made by using the model concentrations, observational data, ECMWF winds and the existing source function volume fluxes. Our new source function gives a global SSA production for particles smaller than 10μm of 9Pg yr-1 and is the best fit to the observed concentrations. The existing source functions display the large uncertainties, spanning from a global emitted mass of 1.9 to 100’s of Pg yr-1. Wind dependencies also range strongly and those far from U103.5, have poor correlation with observed values. It is also possible to add temperature dependence to an existing source function to come further towards observed values with the model results. 
  •  
8.
  • Hamburger, Thomas, et al. (författare)
  • Airborne observations of aerosol microphysical properties and particle ageing processes in the troposphere above Europe
  • 2012
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 12:23, s. 11533-11554
  • Tidskriftsartikel (refereegranskat)abstract
    • In-situ measurements of aerosol microphysical properties were performed in May 2008 during the EUCAARI-LONGREX campaign. Two aircraft, the FAAM BAe-146 and DLR Falcon 20, operated from Oberpfaffenhofen, Germany. A comprehensive data set was obtained comprising the wider region of Europe north of the Alps throughout the whole tropospheric column. Prevailing stable synoptic conditions enabled measurements of accumulating emissions inside the continental boundary layer reaching a maximum total number concentration of 19 000 particles cm(-3) stp. Ultra-fine particles as indicators for nucleation events were observed within the boundary layer during high pressure conditions and after updraft of emissions induced by frontal passages above 8 km altitude in the upper free troposphere. Aerosol ageing processes during air mass transport are analysed using trajectory analysis. The ratio of particles containing a non-volatile core (250 degrees C) to the total aerosol number concentration was observed to increase within the first 12 to 48 h from the particle source from 50 to 85% due to coagulation. Aged aerosol also features an increased fraction of accumulation mode particles of approximately 40% of the total number concentration. The presented analysis provides an extensive data set of tropospheric aerosol microphysical properties on a continental scale which can be used for atmospheric aerosol models and comparisons of satellite retrievals.
  •  
9.
  • Hamburger, Thomas, et al. (författare)
  • Long-term in situ observations of biomass burning aerosol at a high altitude station in Venezuela - sources, impacts and interannual variability
  • 2013
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:19, s. 9837-9853
  • Tidskriftsartikel (refereegranskat)abstract
    • First long-term observations of South American biomass burning aerosol within the tropical lower free troposphere are presented. The observations were conducted between 2007 and 2009 at a high altitude station (4765 m a.s.l.) on the Pico Espejo, Venezuela. Sub-micron particle volume, number concentrations of primary particles and particle absorption were observed. Orographic lifting and shallow convection leads to a distinct diurnal cycle at the station. It enables measurements within the lower free troposphere during night-time and observations of boundary layer air masses during daytime and at their transitional regions. The seasonal cycle is defined by a wet rainy season and a dry biomass burning season. The particle load of biomass burning aerosol is dominated by fires in the Venezuelan savannah. Increases of aerosol concentrations could not be linked to long-range transport of biomass burning plumes from the Amazon basin or Africa due to effective wet scavenging of particles. Highest particle concentrations were observed within boundary layer air masses during the dry season. Ambient sub-micron particle volume reached 1.4 +/- 1.3 mu m(3) cm(-3), refractory particle number concentrations (at 300 degrees C) 510+/-420 cm(-3) and the absorption coefficient 0.91+/-1.2 Mm(-1). The respective concentrations were lowest within the lower free troposphere during the wet season and averaged at 0.19+/-0.25 mu m(3) cm-3, 150+/-94 cm(-3) and 0.15+/-0.26 Mm(-1). A decrease of particle concentrations during the dry seasons from 2007-2009 could be connected to a decrease in fire activity in the wider region of Venezuela using MODIS satellite observations. The variability of biomass burning is most likely linked to the El Nino-Southern Oscillation (ENSO). Low biomass burning activity in the Venezuelan savannah was observed to follow La Nina conditions, high biomass burning activity followed El Nino conditions.
  •  
10.
  • Hamburger, T., et al. (författare)
  • Overview of the synoptic and pollution situation over Europe during the EUCAARI-LONGREX field campaign
  • 2011
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 11:3, s. 1065-1082
  • Tidskriftsartikel (refereegranskat)abstract
    • In May 2008 the EUCAARI-LONGREX aircraft field campaign was conducted within the EUCAARI intensive observational period. The campaign aimed at studying the distribution and evolution of air mass properties on a continental scale. Airborne aerosol and trace gas measurements were performed aboard the German DLR Falcon 20 and the British FAAM BAe-146 aircraft. This paper outlines the meteorological situation over Europe during May 2008 and the temporal and spatial evolution of predominantly anthropogenic particulate pollution inside the boundary layer and the free troposphere. Time series data of six selected ground stations are used to discuss continuous measurements besides the single flights. The observations encompass total and accumulation mode particle number concentration (0.1–0.8 μm) and black carbon mass concentration as well as several meteorological parameters. Vertical profiles of total aerosol number concentration up to 10 km are compared to vertical profiles probed during previous studies.During the first half of May 2008 an anticyclonic blocking event dominated the weather over Central Europe. It led to increased pollutant concentrations within the centre of the high pressure inside the boundary layer. Due to long-range transport the accumulated pollution was partly advected towards Western and Northern Europe. The measured aerosol number concentrations over Central Europe showed in the boundary layer high values up to 14 000 cm−3 for particles in diameter larger 10 nm and 2300 cm−3 for accumulation mode particles during the high pressure period, whereas the middle free troposphere showed rather low concentrations of particulates. Thus a strong negative gradient of aerosol concentrations between the well mixed boundary layer and the clean middle troposphere occurred.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 31
Typ av publikation
tidskriftsartikel (28)
konferensbidrag (1)
doktorsavhandling (1)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (29)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Krejci, Radovan (29)
Ström, Johan (9)
Coe, H. (8)
Nilsson, Douglas (5)
Tunved, Peter (5)
Wiedensohler, A. (4)
visa fler...
McMeeking, G. (4)
Bower, K. N. (4)
Allan, J. D. (4)
Birmili, W. (3)
Petzold, A. (3)
Borg-Karlson, Anna-K ... (3)
Swietlicki, Erik (3)
Mårtensson, Monica (3)
Artaxo, Paulo (3)
Williams, P. I. (3)
Kulmala, Markku (3)
de Leeuw, G. (3)
Nozière, Barbara (3)
Hamburger, Thomas (3)
Stohl, A. (3)
Liu, D. (2)
Kulmala, M (2)
Wood, R (2)
Hansson, Hans-Christ ... (2)
Hoffmann, P (2)
Vogt, Matthias (2)
Artaxo, P. (2)
Baltensperger, U. (2)
Laaksonen, A. (2)
Allen, G (2)
Abel, S. J. (2)
Toniazzo, T. (2)
Fochesatto, J. (2)
Russell, L. M. (2)
Chand, D. (2)
Dommen, Josef (2)
Petaja, Tuukka (2)
Prevot, Andre S. H. (2)
Calderon, S (2)
GROSS, J (2)
Lihavainen, H. (2)
O'Dowd, C. (2)
Laj, P. (2)
Sellegri, K. (2)
Harrison, R. M. (2)
Backman, John (2)
Carslaw, K. S. (2)
Hochschild, G. (2)
Pettersson Redeby, J ... (2)
visa färre...
Lärosäte
Stockholms universitet (31)
Uppsala universitet (6)
Kungliga Tekniska Högskolan (3)
Lunds universitet (3)
Göteborgs universitet (1)
Chalmers tekniska högskola (1)
visa fler...
Linnéuniversitetet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (31)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (26)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy