SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kremp Anke) srt2:(2015-2019)"

Sökning: WFRF:(Kremp Anke) > (2015-2019)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Annenkova, Nataliia V., et al. (författare)
  • Delineating closely related dinoflagellate lineages using phylotranscriptomics
  • 2018
  • Ingår i: Journal of Phycology. - : Wiley. - 0022-3646. ; 54:4, s. 571-576
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently radiated dinoflagellates Apocalathium aciculiferum (collected in Lake Erken, Sweden), Apocalathium malmogiense (Baltic Sea) and Apocalathium aff. malmogiense (Highway Lake, Antarctica) represent a lineage with an unresolved phylogeny. We determined their phylogenetic relationships using phylotranscriptomics based on 792 amino acid sequences. Our results showed that A. aciculiferum diverged from the other two closely related lineages, consistent with their different morphologies in cell size, relative cell length and presence of spines. We hypothesized that A. aff. malmogiense and A. malmogiense, which inhabit different hemispheres, are evolutionarily more closely related because they diverged from a marine common ancestor, adapting to a wide salinity range, while A. aciculiferum colonized a freshwater habitat, by acquiring adaptations to this environment, in particular, salinity intolerance. We show that phylotranscriptomics can resolve the phylogeny of recently diverged protists. This has broad relevance, given that many phytoplankton species are morphologically very similar, and single genes sometimes lack the information to determine species’ relationships.
  •  
2.
  • Bunse, Carina, et al. (författare)
  • Spatio-Temporal Interdependence of Bacteria and Phytoplankton during a Baltic Sea Spring Bloom
  • 2016
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media S.A.. - 1664-302X. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • In temperate systems, phytoplankton spring blooms deplete inorganic nutrients and are major sources of organic matter for the microbial loop. In response to phytoplankton exudates and environmental factors, heterotrophic microbial communities are highly dynamic and change their abundance and composition both on spatial and temporal scales. Yet, most of our understanding about these processes comes from laboratory model organism studies, mesocosm experiments or single temporal transects. Spatial -temporal studies examining interactions of phytoplankton blooms and bacterioplankton community composition and function, though being highly informative, are scarce. In this study, pelagic microbial community dynamics (bacteria and phytoplankton) and environmental variables were monitored during a spring bloom across the Baltic Proper (two cruises between North Germany to Gulf of Finland). To test to what extent bacterioplankton community composition relates to the spring bloom, we used next generation amplicon sequencing of the 16S rRNA gene, phytoplankton diversity analysis based on microscopy counts and population genotyping of the dominating diatom Skeletonema rnarinoi. Several phytoplankton bloom related and environmental variables were identified to influence bacterial community composition. Members of Bacteroidetes and Alphaproteobacteria dominated the bacterial community composition but the bacterial groups showed no apparent correlation with direct bloom related variables. The less abundant bacterial phyla Actinobacteria, Planctomycetes, and Verrucomicrobia, on the other hand, were strongly associated with phytoplankton biomass, diatom:dinoflagellate ratio, and colored dissolved organic matter (cDOM). Many bacterial operational taxonomic units (OTUs) showed high niche specificities. For example, particular Bacteroidetes OTUs were associated with two distinct genetic clusters of S. marinoi. Our study revealed the complexity of interactions of bacterial taxa with inter- and intraspecific genetic variation in phytoplankton. Overall, our findings imply that biotic and abiotic factors during spring bloom influence bacterial community dynamics in a hierarchical manner.
  •  
3.
  • Godhe, Anna, 1967, et al. (författare)
  • Physical barriers and environmental gradients cause spatial and temporal genetic differentiation of an extensive algal bloom
  • 2016
  • Ingår i: Journal of Biogeography. - : John Wiley & Sons. - 0305-0270 .- 1365-2699. ; 43:6, s. 1130-1142
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: To test if a phytoplankton bloom is panmictic, or whether geographical and environmental factors cause spatial and temporal genetic structure.Location: Baltic Sea.Method: During four cruises, we isolated clonal strains of the diatom Skeletonema marinoifrom 9 to 10 stations along a 1132 km transect and analysed the genetic structure using eight microsatellites. Using F-statistics and Bayesian clustering analysis we determined if samples were significantly differentiated. A seascape approach was applied to examine correlations between gene flow and oceanographic connectivity, and combined partial Mantel test and RDA based variation partitioning to investigate associations with environmental gradients.Results: The bloom was initiated during the second half of March in the southern and the northern- parts of the transect, and later propagated offshore. By mid-April the bloom declined in the south, whereas high phytoplankton biomass was recorded northward. We found two significantly differentiated populations along the transect. Genotypes were significantly isolated by distance and by the south–north salinity gradient, which illustrated that the effects of distance and environment were confounded. The gene flow among the sampled stations was significantly correlated with oceanographic connectivity. The depletion of silica during the progression of the bloom was related to a temporal population genetic shift.Main conclusions: A phytoplankton bloom may propagate as a continuous cascade and yet be genetically structured over both spatial and temporal scales. The Baltic Sea spring bloom displayed strong spatial structure driven by oceanographic connectivity and geographical distance, which was enhanced by the pronounced salinity gradient. Temporal transition of conditions important for growth may induce genetic shifts and different phenotypic strategies, which serve to maintain the bloom over longer periods.
  •  
4.
  • Jerney, Jacqueline, et al. (författare)
  • Future temperature and salinity do not exert selection pressure on cyst germination of a toxic phytoplankton species
  • 2019
  • Ingår i: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 9:8, s. 4443-4451
  • Tidskriftsartikel (refereegranskat)abstract
    • Environmental conditions regulate the germination of phytoplankton resting stages. While some factors lead to synchronous germination, others stimulate germination of only a small fraction of the resting stages. This suggests that habitat filters may act on the germination level and thus affect selection of blooming strains. Benthic “seed banks” of the toxic dinoflagellate Alexandrium ostenfeldii from the Baltic Sea are genetically and phenotypically diverse, indicating a high potential for adaptation by selection on standing genetic variation. Here, we experimentally tested the role of climate-related salinity and temperature as selection filters during germination and subsequent establishment of A. ostenfeldii strains. A representative resting cyst population was isolated from sediment samples, and germination and reciprocal transplantation experiments were carried out, including four treatments: Average present day germination conditions and three potential future conditions: high temperature, low salinity, and high temperature in combination with low salinity. We found that the final germination success of A. ostenfeldii resting cysts was unaffected by temperature and salinity in the range tested. A high germination success of more than 80% in all treatments indicates that strains are not selected by temperature and salinity during germination, but selection becomes more important shortly after germination, in the vegetative stage of the life cycle. Moreover, strains were not adapted to germination conditions. Instead, highly plastic responses occurred after transplantation and significantly higher growth rates were observed at higher temperature. High variability of strain-specific responses has probably masked the overall effect of the treatments, highlighting the importance of testing the effect of environmental factors on many strains. It is likely that A. ostenfeldii populations can persist in the future, because suitable strains, which are able to germinate and grow well at potential future climate conditions, are part of the highly diverse cyst population. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://doi.org/10.5061/dryad.c8c83nr. © 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
  •  
5.
  • Rengefors, Karin, et al. (författare)
  • Genetic diversity and evolution in eukaryotic phytoplankton : Revelations from population genetic studies
  • 2017
  • Ingår i: Journal of Plankton Research. - : Oxford University Press (OUP). - 0142-7873 .- 1464-3774. ; 39:2, s. 165-179
  • Tidskriftsartikel (refereegranskat)abstract
    • Eukaryotic phytoplankton exhibit an enormous species richness, displaying a range of phylogenetic, morphological and physiological diversity. Yet, until recently, very little was known about the diversity, genetic variation and evolutionary processes within species and populations. An approach to explore this diversity and to understand evolution of phytoplankton is to use population genetics as a conceptual framework and methodology. Here, we discuss the patterns, processes and questions that population genetic studies have revealed in eukaryotic phytoplankton. First, we describe the main biological processes generating genetic variation. We specifically discuss the importance of life-cycle complexity for genetic and phenotypic diversity and consider how such diversity can be maintained during blooms when rapid asexual proliferation dominates. Next, we explore how genetic diversity is partitioned over time and space, with a focus on the processes shaping this structure, in particular selection and genetic exchange. Our aim is also to show how population genetics can be used to make inferences about realized dispersal and sexual recombination, as these processes are so difficult to study directly. Finally, we highlight important open questions and suggest promising avenues for future studies that will be made possible by new sequencing technologies.
  •  
6.
  • Rengefors, Karin, et al. (författare)
  • The ecology of freshwater dinoflagellates
  • 2018
  • Ingår i: Süßwasserflora von Mitteleuropa, Bd. 6: Dinophyceae : Freshwater Flora of Central Europe, Vol. 6: Dinophyceae - Freshwater Flora of Central Europe, Vol. 6: Dinophyceae. - 9783662562680 - 9783662562697 ; 6, s. 27-36
  • Bokkapitel (refereegranskat)
  •  
7.
  • Savela, Henna, et al. (författare)
  • Quantity of the dinoflagellate sxtA4 gene and cell density correlates with paralytic shellfish toxin production in Alexandrium ostenfeldii blooms
  • 2016
  • Ingår i: Harmful Algae. - : Elsevier BV. - 1568-9883 .- 1878-1470. ; 52, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • Many marine dinofiagellates, including several species of the genus Alexandrium, Gymnodinium catenatum, and Pyrodinium bahamense are known for their capability to produce paralytic shellfish toxins (PST), which can cause severe, most often food-related poisoning. The recent discovery of the first PST biosynthesis genes has laid the foundation for the development of molecular detection methods for monitoring and study of PST-producing dinofiagellates. In this study, a probe-based qPCR method for the detection and quantification of the sxtA4 gene present in Alexandrium spp. and Gymnodinium catenatum was designed. The focus was on Alexandrium ostenfeldii, a species which recurrently forms dense toxic blooms in areas within the Baltic Sea. A consistent, positive correlation between the presence of sxtA4 and PST biosynthesis was observed, and the species was found to maintain PST production with an average of 6 genomic copies of sxtA4. In August 2014, A. ostenfeldii populations were studied for cell densities, PST production, as well as sxtA4 and species-specific LSU copy numbers in Foglo, Aland, Finland, where an exceptionally dense bloom, consisting of 6.3 x 10(6) cells L-1, was observed. Cell concentrations, and copy numbers of both of the target genes were positively correlated with total STX, GTX2, and GTX3 concentrations in the environment, the cell density predicting toxin concentrations with the best accuracy (Spearman's p = 0.93, p < 0.01). The results indicated that all A. ostenfeldii cells in the blooms harbored the genetic capability of PST production, making the detection of sxtA4 a good indicator of toxicity. (C) 2015 Elsevier B.V. All rights reserved.
  •  
8.
  • Sörenson, Eva, 1979-, et al. (författare)
  • Consistency in microbiomes in cultures of Alexandrium species isolated from brackish and marine waters
  • 2019
  • Ingår i: Environmental Microbiology Reports. - : Wiley-Blackwell. - 1758-2229. ; 11:3, s. 425-433
  • Tidskriftsartikel (refereegranskat)abstract
    • Phytoplankton and bacteria interactions have a significant role in aquatic ecosystem functioning. Associations can range from mutualistic to parasitic, shaping biogeochemical cycles and having a direct influence on phytoplankton growth. How variations in phenotype and sampling location, affect the phytoplankton microbiome is largely unknown. A high‐resolution characterization of the bacterial community in cultures of the dinoflagellate Alexandrium was performed on strains isolated from different geographical locations and at varying anthropogenic impact levels. Microbiomes of Baltic Sea Alexandrium ostenfeldii isolates were dominated by Betaproteobacteria and were consistent over phenotypic and genotypic Alexandrium strain variation, resulting in identification of an A. ostenfeldii core microbiome. Comparisons with in situ bacterial communities showed that taxa found in this A. ostenfeldii core were specifically associated to dinoflagellate dynamics in the Baltic Sea. Microbiomes of Alexandrium tamarense and minutum, isolated from the Mediterranean Sea, differed from those of A. ostenfeldii in bacterial diversity and composition but displayed high consistency, and a core set of bacterial taxa was identified. This indicates that Alexandrium isolates with diverse phenotypes host predictable, species‐specific, core microbiomes reflecting the abiotic conditions from which they were isolated. These findings enable in‐depth studies of potential interactions occurring between Alexandrium and specific bacterial taxa.
  •  
9.
  • Tesson, Sylvie V.M., et al. (författare)
  • The potential for dispersal of microalgal resting cysts by migratory birds
  • 2018
  • Ingår i: Journal of Phycology. - : Wiley. - 0022-3646. ; 54:4, s. 518-528
  • Tidskriftsartikel (refereegranskat)abstract
    • Most microalgal species are geographically widespread, but little is known about how they are dispersed. One potential mechanism for long-distance dispersal is through birds, which may transport cells internally (endozoochory) and deposit them during, or in-between, their migratory stopovers. We hypothesize that dinoflagellates, in particular resting stages, can tolerate bird digestion; that bird temperature, acidity, and retention time negatively affect dinoflagellate viability; and that recovered cysts can germinate after passage through the birds’ gut, contributing to species-specific dispersal of the dinoflagellates across scales. Tolerance of two dinoflagellate species (Peridiniopsis borgei, a warm-water species and Apocalathium malmogiense, a cold-water species) to Mallard gut passage was investigated using in vitro experiments simulating the gizzard and caeca conditions. The effect of in vitro digestion and retention time on cell integrity, cell viability, and germination capacity of the dinoflagellate species was examined targeting both their vegetative and resting stages. Resting stages (cysts) of both species were able to survive simulated bird gut passage, even if their survival rate and germination were negatively affected by exposure to acidic condition and bird internal temperature. Cysts of A. malmogiense were more sensitive than P. borgei to treatments and to the presence of digestive enzymes. Vegetative cells did not survive conditions of bird internal temperature and formed pellicle cysts when exposed to gizzard-like acid conditions. We show that dinoflagellate resting cysts serve as dispersal propagules through migratory birds. Assuming a retention time of viable cysts of 2–12 h to duck stomach conditions, cysts could be dispersed 150–800 km and beyond.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy