SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kremp Anke) srt2:(2020-2024)"

Sökning: WFRF:(Kremp Anke) > (2020-2024)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jerney, Jacqueline, et al. (författare)
  • Seasonal genotype dynamics of a marine dinoflagellate : Pelagic populations are homogeneous and as diverse as benthic seed banks
  • 2021
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X.
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic diversity is the basis for evolutionary adaptation and selection under changing environmental conditions. Phytoplankton populations are genotypically diverse, can become genetically differentiated within small spatiotemporal scales and many species form resting stages. Resting stage accumulations in sediments (seed banks) are expected to serve as reservoirs for genetic information, but so far their role in maintaining phytoplankton diversity and in evolution has remained unclear. In this study we used the toxic dinoflagellate Alexandrium ostenfeldii (Dinophyceae) as a model organism to investigate if (i) the benthic seed bank is more diverse than the pelagic population and (ii) the pelagic population is seasonally differentiated. Resting stages (benthic) and plankton (pelagic) samples were collected at a coastal bloom site in the Baltic Sea, followed by cell isolation and genotyping using microsatellite markers (MS) and restriction site associated DNA sequencing (RAD). High clonal diversity (98%–100%) combined with intermediate to low gene diversity (0.58–0.03, depending on the marker) was found. Surprisingly, the benthic and pelagic fractions of the population were equally diverse, and the pelagic fraction was temporally homogeneous, despite seasonal fluctuation of environmental selection pressures. The results of this study suggest that continuous benthic–pelagic coupling, combined with frequent sexual reproduction, as indicated by persistent linkage equilibrium, prevent the dominance of single clonal lineages in a dynamic environment. Both processes harmonize the pelagic with the benthic population and thus prevent seasonal population differentiation. At the same time, frequent sexual reproduction and benthic–pelagic coupling maintain high clonal diversity in both habitats.
  •  
2.
  • Rengefors, Karin, et al. (författare)
  • Population genomic analyses reveal that salinity and geographic isolation drive diversification in a free-living protist
  • 2024
  • Ingår i: Scientific Reports. - 2045-2322. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Protists make up the vast diversity of eukaryotic life and play a critical role in biogeochemical cycling and in food webs. Because of their small size, cryptic life cycles, and large population sizes, our understanding of speciation in these organisms is very limited. We performed population genomic analyses on 153 strains isolated from eight populations of the recently radiated dinoflagellate genus Apocalathium, to explore the drivers and mechanisms of speciation processes. Species of this genus inhabit both freshwater and saline habitats, lakes and seas, and are found in cold temperate environments across the world. RAD sequencing analyses revealed that the populations were overall highly differentiated, but morphological similarity was not congruent with genetic similarity. While geographic isolation was to some extent coupled to genetic distance, this pattern was not consistent. Instead, we found evidence that the environment, specifically salinity, is a major factor in driving ecological speciation in Apocalathium. While saline populations were unique in loci coupled to genes involved in osmoregulation, freshwater populations appear to lack these. Our study highlights that adaptation to freshwater through loss of osmoregulatory genes may be an important speciation mechanism in free-living aquatic protists.
  •  
3.
  • Schmidt, Alexandra, et al. (författare)
  • Decoding the Baltic Sea's past and present : A simple molecular index for ecosystem assessment
  • 2024
  • Ingår i: Ecological Indicators. - : Elsevier. - 1470-160X .- 1872-7034. ; 166
  • Tidskriftsartikel (refereegranskat)abstract
    • Marginal sea ecosystems, such as the Baltic Sea, are severely affected by anthropogenic pressures, such as climate warming, pollution, and eutrophication, which increased in the course of the past century. Biodiversity monitoring data and assessment of environmental status in such systems have typically been carried out only for the past few decades, if at all, and knowledge on pre-impact stability and good ecological status is limited. An extension of monitoring time series can potentially be achieved through analyses of paleoecological records, e.g. for phytoplankton, which form the base of the food web and are highly susceptible to environmental changes. Within the phytoplankton community, dinoflagellates and diatoms play a significant role as primary producers, and their relative dominance in the spring bloom, calculated as Dia/Dino index, is used as an indicator for the environmental status of the Baltic Sea. To extend time series on the dominance patterns and include non-fossilized dinoflagellates, we here establish a simple droplet digital PCR (ddPCR) reaction on ancient DNA from sediment cores that decodes phytoplankton dynamics. We focus on two common spring bloom species, the diatom Skeletonema marinoi and the dinoflagellate Apocalathium malmogiense, for which we evaluate a DNA based dominance index. It performs very well in comparison to DNA metabarcoding and modern monitoring and can elucidate past species dominance across the past century and across millennia in different basins of the Baltic. For the past century, we see a dominance shift already starting before the mid-20th century in two of the Baltic Sea basins, thus substantially predating current monitoring programs. Shifts are only partly coeval among the cores and the index shows different degrees of stability. This pattern is confirmed across millennia, where a long-term stable relationship between the diatom and the dinoflagellate is observed in the Eastern Gotland Basin, while data from the Gulf of Finland bear testimony to a much more unstable relationship. This confirms that good ecological status based on the dominance pattern of diatoms and dinoflagellates must be established locally and exemplifies how sediment core DNA can be employed to extend monitoring data.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy