SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Krickl Patricia) "

Sökning: WFRF:(Krickl Patricia)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hooftman, Danny A. P., et al. (författare)
  • Could green infrastructure supplement ecosystem service provision from semi-natural grasslands?
  • 2023
  • Ingår i: Journal of Environmental Management. - Stockholm : Elsevier BV. - 0301-4797 .- 1095-8630. ; 328
  • Tidskriftsartikel (refereegranskat)abstract
    • Ancient semi-natural grasslands in Europe are important for ecosystem service (ES) provision. Often, the surrounding matrix contains ‘Grassland Green Infrastructure’ (GGI) that contain grassland species which have the potential to supplement grassland ES provision across the landscape. Here we investigate the potential for GGI to deliver a set of complementary ES, driven by plant composition.We surveyed 36 landscapes across three European countries comprising core grasslands and their surrounding GGI. We calculated community-level values of plant species characteristics to provide indicators for four ES: nature conservation value, pollination, carbon storage and aesthetic appeal.Inferred ES delivery for GGI was substantially lower than in core grasslands for conservation, pollination and aesthetic appeal indicators, but not for carbon storage. These differences were driven by the GGI having 17% fewer plant species, and compositional differences, with 61% of species unique to the core grasslands. In addition, connectivity to the core, the amount of GGI and inferred seed dispersal distances by livestock, were strongly positively correlated with conservation value, pollination and aesthetic indicators. All ES indicators showed similar responses to the GGI spatial structure and distance to the core, suggesting robust effects of these drivers on ES. We projected that improved landscape-wide delivery of nature conservation value and pollination could be achieved through targeted GGI management. Reductions in the distances seeds would need to disperse, more GGI, along with a diversification of the GGI elements, were predicted to enhance service credits.We conclude that for vegetation-related ES, species surveys can be employed to assess potential ES delivery. Creating and enhancing GGI is a useful landscape management strategy to supplement the ES delivered by ancient grasslands.
  •  
2.
  • Hooftman, Danny, et al. (författare)
  • Dispersal limitation, eutrophication and propagule pressure constrain the conservation value of Grassland Green Infrastructure
  • 2021
  • Ingår i: Biological Conservation. - : Elsevier BV. - 0006-3207 .- 1873-2917. ; 258
  • Tidskriftsartikel (refereegranskat)abstract
    • Semi-natural grasslands harbour many of Europe's species of conservation interest. Although larger grasslands are the focus of most conservation activity, many grassland fragments are scattered across landscapes –in small patches or along linear elements– which can form Grassland Green Infrastructure (GGI). GGI has the potential to enhance landscape diversity by creating functioning metacommunities comprising of large semi-natural grasslands and these surrounding fragments. While often highlighted in conservation policy, little is known about the biodiversity supported by green infrastructure itself and thus its conservation potential.To address this issue, we contrasted plant communities in 36 ‘core’ grassland sites across three European countries with communities in the surrounding GGI. We related compositional differences to amount and type of GGI habitat (patches or linear), and the distances for seed dispersal by livestock from core sites. We found substantial differences between the GGI and the core sites, with a mean 54% species turn-over. These differences indicated filtering of stress tolerant species characteristic of low nutrient conditions, and semi-natural grassland specialists. Species with poorer dispersal abilities declined strongly with increasing distances from the core sites. The many additional species in the GGI, not found in the core sites, were predominantly those with a competitive strategy and high seed dispersal ability.We conclude that the biodiversity-supporting role of GGI across Europe is severely constrained by eutrophication, dispersal limitation and external propagule pressure. Actions to improve the quality of GGI might include enhancing dispersal by livestock combined with more type-diversification and less intensively used grassland habitats.
  •  
3.
  • Plue, Jan, et al. (författare)
  • Functional rather than structural connectivity explains grassland plant diversity patterns following landscape scale habitat loss
  • 2020
  • Ingår i: Landscape Ecology. - 0921-2973 .- 1572-9761.
  • Tidskriftsartikel (refereegranskat)abstract
    • Context Functional connectivity is vital for plant species dispersal, but little is known about how habitat loss and the presence of green infrastructure interact to affect both functional and structural connectivity, and the impacts of each on species groups. Objectives We investigate how changes in the spatial configuration of species-rich grasslands and related green infrastructure such as road verges, hedgerows and forest borders in three European countries have influenced landscape connectivity, and the effects on grassland plant biodiversity. Methods We mapped past and present land use for 36 landscapes in Belgium, Germany and Sweden, to estimate connectivity based on simple habitat spatial configuration (structural connectivity) and accounting for effective dispersal and establishment (functional connectivity) around focal grasslands. We used the resulting measures of landscape change to interpret patterns in plant communities. Results Increased presence of landscape connecting elements could not compensate for large scale losses of grassland area resulting in substantial declines in structural and functional connectivity. Generalist species were negatively affected by connectivity, and responded most strongly to structural connectivity, while functional connectivity determined the occurrence of grassland specialists in focal grasslands. Restored patches had more generalist species, and a lower density of grassland specialist species than ancient patches. Conclusions Protecting both species rich grasslands and dispersal pathways within landscapes is essential for maintaining grassland biodiversity. Our results show that increases in green infrastructure have not been sufficient to offset loss of semi-natural habitat, and that landscape links must be functionally effective in order to contribute to grassland diversity.
  •  
4.
  • Plue, Jan, et al. (författare)
  • Green infrastructure can promote plant functional connectivity in a grassland species around fragmented semi-natural grasslands in NW-Europe
  • 2022
  • Ingår i: Ecography. - : Wiley. - 0906-7590 .- 1600-0587. ; 2022:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Species may benefit from green infrastructure, i.e. the network of natural and anthropogenic habitat remnants in human-dominated landscapes, if it helps isolated populations in remaining habitat patches to be functionally connected. The importance of green infrastructure is therefore increasingly emphasized in conservation policy to counter biodiversity loss. However, there is limited evidence, particularly in plants, that green infrastructure promotes functional connectivity, i.e. supports the colonization of habitat patches across a landscape. We applied landscape genetics to test whether the green infrastructure supports structural and functional connectivity in the grassland perennial Galium verum, in 35 landscapes in Belgium, Germany and Sweden. We used multivariate genetic clustering techniques, nestedness analyses and conditional inference trees to examine landscape-scale patterns in genetic diversity and structure of plant populations in the green infrastructure surrounding semi-natural grasslands. Inferred functional connectivity explained genetic variation better than structural connectivity, yielding positive effects on genetic variation. The road verge network, a major structural component of the green infrastructure and its functional connectivity, most effectively explained genetic diversity and composition in G. verum. Galium verum ramets occupying the surrounding landscape proved to be genetic subsets of focal grassland populations, shaping a nested landscape population genetic structure with focal grasslands, particularly ancient ones, harbouring unique genetic diversity. This nested pattern weakened as road network density increased, suggesting road verge networks enable high landscape occupancy by increased habitat availability and facilitates gene flow into the surrounding landscape. Our study proposes that green infrastructure can promote functional connectivity, providing that a plant species can survive outside of core habitat patches. As this often excludes habitat specialist species, conservation practice and policy should primarily focus on ancient, managed semi-natural grasslands. These grasslands both harbour unique genetic diversity and act as primary gene and propagule sources for the surrounding landscape, highlighting their conservation value.
  •  
5.
  • Traveset, Anna, et al. (författare)
  • Effect of green infrastructure on restoration of pollination networks and plant performance in semi-natural dry grasslands across Europe
  • 2024
  • Ingår i: Journal of Applied Ecology. - 0021-8901 .- 1365-2664.
  • Tidskriftsartikel (refereegranskat)abstract
    • Agricultural intensification, afforestation and land abandonment are major drivers of biodiversity loss in semi-natural grasslands across Europe. Reversing these losses requires the reinstatement of plant–animal interactions such as pollination. Here we assessed the differences in species composition and patterns of plant-pollinator interactions in ancient and restored grasslands and how these patterns are influenced by landscape connectivity, across three European regions (Belgium, Germany and Sweden).We evaluated the differences in pollinator community assemblage, abundance and interaction network structure between 24 ancient and restored grasslands. We then assessed the effect of surrounding landscape functional connectivity (i.e. green infrastructure, GI) on these variables and tested possible consequences on the reproduction of two model plants, Lotus corniculatus and Salvia pratensis.Neither pollinator richness nor species composition differed between ancient and restored grasslands. A high turnover of interactions across grasslands was detected but was mainly due to replacement of pollinator and plant species. The impact of grassland restoration was consistent across various pollinator functional groups, whereas the surrounding GI had differential effects. Notably, bees, butterflies, beetles, and dipterans (excluding hoverflies) exhibited the most significant responses to GI variations. Interestingly, networks in restored grasslands were more specialised (i.e. less functionally redundant) than in ancient ones and also showed a higher number of insect visits to habitat-generalist plant species. Landscape connectivity had a similar effect, with habitat-specialist plant species receiving fewer visits at higher GI values.Fruit set in S. pratensis and L. corniculatus was unaffected by grassland type or GI. However, the fruit set in the specialist S. pratensis increased with the number of pollinator visits, indicating a positive correlation between pollinator activity and reproductive success in this particular species.Synthesis and applications. Our findings provide evidence of the necessity to enhance ecosystem functions while avoiding biotic homogenisation. Restoration programs should aim at increasing landscape connectivity which influences plant communities, pollinator assemblages and their interaction patterns. To avoid generalist species taking over from specialists in restored grasslands, we suggest reinforcing the presence of specialist species in the latter, for instance by means of introductions, as well as increasing the connectivity to source populations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy