SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kronenberg Florian) srt2:(2020-2023)"

Sökning: WFRF:(Kronenberg Florian) > (2020-2023)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gorski, Mathias, et al. (författare)
  • Genetic loci and prioritization of genes for kidney function decline derived from a meta-analysis of 62 longitudinal genome-wide association studies
  • 2022
  • Ingår i: Kidney International. - : Elsevier. - 0085-2538 .- 1523-1755. ; 102:3, s. 624-639
  • Tidskriftsartikel (refereegranskat)abstract
    • Estimated glomerular filtration rate (eGFR) reflects kidney function. Progressive eGFR-decline can lead to kidney failure, necessitating dialysis or transplantation. Hundreds of loci from genome-wide association studies (GWAS) for eGFR help explain population cross section variability. Since the contribution of these or other loci to eGFR-decline remains largely unknown, we derived GWAS for annual eGFR-decline and meta-analyzed 62 longitudinal studies with eGFR assessed twice over time in all 343,339 individuals and in high-risk groups. We also explored different covariate adjustment. Twelve genomewide significant independent variants for eGFR-decline unadjusted or adjusted for eGFR- baseline (11 novel, one known for this phenotype), including nine variants robustly associated across models were identified. All loci for eGFR-decline were known for cross-sectional eGFR and thus distinguished a subgroup of eGFR loci. Seven of the nine variants showed variant- by-age interaction on eGFR cross section (further about 350,000 individuals), which linked genetic associations for eGFR-decline with agedependency of genetic cross- section associations. Clinically important were two to four-fold greater genetic effects on eGFR-decline in high-risk subgroups. Five variants associated also with chronic kidney disease progression mapped to genes with functional in- silico evidence (UMOD, SPATA7, GALNTL5, TPPP). An unfavorable versus favorable nine-variant genetic profile showed increased risk odds ratios of 1.35 for kidney failure (95% confidence intervals 1.03- 1.77) and 1.27 for acute kidney injury (95% confidence intervals 1.08-1.50) in over 2000 cases each, with matched controls). Thus, we provide a large data resource, genetic loci, and prioritized genes for kidney function decline, which help inform drug development pipelines revealing important insights into the age-dependency of kidney function genetics.
  •  
2.
  • Gorski, Mathias, et al. (författare)
  • Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline
  • 2021
  • Ingår i: Kidney International. - : Elsevier. - 0085-2538 .- 1523-1755. ; 99:4, s. 926-939
  • Tidskriftsartikel (refereegranskat)abstract
    • Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m2/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m2 at follow-up among those with eGFRcrea 60 mL/min/1.73m2 or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.
  •  
3.
  • Heinz, Judith, et al. (författare)
  • Strategies to reduce antibiotic use in women with uncomplicated urinary tract infection in primary care : protocol of a systematic review and meta-analysis including individual patient data
  • 2020
  • Ingår i: BMJ Open. - : BMJ Publishing Group Ltd. - 2044-6055. ; 10:10
  • Forskningsöversikt (refereegranskat)abstract
    • Introduction: Uncomplicated urinary tract infection (UTI) in women is a common reason to present in general practice and is usually treated with antibiotics to reduce symptom severity and duration. Results of recent clinical trials indicate that non-antibiotic treatment approaches can also be effective. However, it remains unclear which patients would benefit from antibiotic treatment and which can effectively and safely be treated without antibiotics. This systematic review and meta-analysis aims to estimate the effect of treatment strategies to reduce antibiotic use in comparison with immediate antibiotic treatment and to identify prognostic factors and moderators of treatment effects. A further aim is to identify subgroups of patients benefiting from a specific therapy.Methods and analysis: A systematic literature search will be performed to identify randomised controlled trials which investigated the effect of treatment strategies to reduce antibiotic use in female adults with uncomplicated UTI compared with immediate antibiotic treatment. Therefore, the primary outcome of the meta-analysis is incomplete recovery. Anonymised individual patient data (IPD) will be collected. Aggregate data will be used for pairwise comparisons of treatment strategies using meta-analysis models with random effects accounting for potential between-study heterogeneity. Potential effect moderators will be explored in meta-regressions. For IPD, generalised linear mixed models will be used, which may be adjusted for baseline characteristics. Interactions of baseline variables with treatment effects will be explored. These models will be used to assess direct comparisons of treatment, but might be extended to networks.Ethics and dissemination: The local institutional review and ethics board judged the project a secondary analysis of existing anonymous data which meet the criteria for waiver of ethics review. Dissemination of the results will be via published scientific papers and presentations. Key messages will be promoted for example, via social media or press releases.
  •  
4.
  • Kanoni, Stavroula, et al. (författare)
  • Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis.
  • 2022
  • Ingår i: Genome biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906 .- 1474-7596. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N=1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.
  •  
5.
  • Kaußner, Yvonne, et al. (författare)
  • Reducing antibiotic use in uncomplicated urinary tract infections in adult women : a systematic review and individual participant data meta-analysis
  • 2022
  • Ingår i: Clinical Microbiology and Infection. - : Elsevier. - 1198-743X .- 1469-0691. ; 28:12, s. 1558-1566
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Randomised controlled trials (RCTs) investigated analgesics, herbal formulations, delayed prescription of antibiotics, and placebo to prevent overprescription of antibiotics in women with uncomplicated urinary tract infections (uUTI).Objectives: To estimate the effect of these strategies and to identify symptoms, signs, or other factors that indicate a benefit from these strategies.Data sources: MEDLINE, EMBASE, Web of Science, LILACS, Cochrane Database of Systematic Reviews and of Controlled Trials, and ClinicalTrials.Study eligibility criteria, participants and interventions: RCTs investigating any strategies to reduce antibiotics vs. immediate antibiotics in adult women with uUTI in primary care.Methods: We extracted individual participant data (IPD) if available, otherwise aggregate data (AD). Bayesian random-effects meta-analysis of the AD was used for pairwise comparisons. Candidate moderators and prognostic indicators of treatment effects were investigated using generalised linear mixed models based on IPD.Results: We analysed IPD of 3524 patients from eight RCTs and AD of 78 patients. Non-antibiotic strategies increased the rates of incomplete recovery (OR 3.0; 95% credible interval (CrI), 1.7–5.5; Bayesian p-value (pB) = 0.0017; τ = 0.6), subsequent antibiotic treatment (OR 3.5; 95% CrI, 2.1–5.8; pB = 0.0003) and pyelonephritis (OR 5.6; 95% CrI, 2.3–13.9; pB = 0.0003). Conversely, they decreased overall antibiotic use by 63%.Patients positive for urinary erythrocytes and urine culture were at increased risk for incomplete recovery (OR 4.7; 95% CrI, 2.1–10.8; pB = 0.0010), but no difference was apparent where both were negative (OR 0.8; 95% CrI, 0.3–2.0; pB = 0.667). In patients treated using non-antibiotic strategies, urinary erythrocytes and positive urine culture were independent prognostic indicators for subsequent antibiotic treatment and pyelonephritis.Conclusions: Compared to immediate antibiotics, non-antibiotic strategies reduce overall antibiotic use but result in poorer clinical outcomes. The presence of erythrocytes and tests to confirm bacteria in urine could be used to target antibiotic prescribing.
  •  
6.
  • Mahajan, Anubha, et al. (författare)
  • Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation
  • 2022
  • Ingår i: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 54:5, s. 560-572
  • Tidskriftsartikel (refereegranskat)abstract
    • We assembled an ancestrally diverse collection of genome-wide association studies (GWAS) of type 2 diabetes (T2D) in 180,834 affected individuals and 1,159,055 controls (48.9% non-European descent) through the Diabetes Meta-Analysis of Trans-Ethnic association studies (DIAMANTE) Consortium. Multi-ancestry GWAS meta-analysis identified 237 loci attaining stringent genome-wide significance (P < 5 x 10(-9)), which were delineated to 338 distinct association signals. Fine-mapping of these signals was enhanced by the increased sample size and expanded population diversity of the multi-ancestry meta-analysis, which localized 54.4% of T2D associations to a single variant with >50% posterior probability. This improved fine-mapping enabled systematic assessment of candidate causal genes and molecular mechanisms through which T2D associations are mediated, laying the foundations for functional investigations. Multi-ancestry genetic risk scores enhanced transferability of T2D prediction across diverse populations. Our study provides a step toward more effective clinical translation of T2D GWAS to improve global health for all, irrespective of genetic background. Genome-wide association and fine-mapping analyses in ancestrally diverse populations implicate candidate causal genes and mechanisms underlying type 2 diabetes. Trans-ancestry genetic risk scores enhance transferability across populations.
  •  
7.
  • Navarese, Eliano P, et al. (författare)
  • The spoils of war and the long-term spoiling of health conditions of entire nations.
  • 2022
  • Ingår i: Atherosclerosis. - : Elsevier BV. - 1879-1484 .- 0021-9150. ; 352:July 2022, s. 76-79
  • Tidskriftsartikel (refereegranskat)abstract
    • The healthcare system of Ukraine was already suffering from several shortfalls before February 2022, but the war of aggression started by the Russian leadership is poised to inflict a further severe blow that will have long-lasting consequences for the health of all Ukrainians. In pre-war Ukraine, noncommunicable diseases (NCDs) contributed to 91% of deaths, especially cardiovascular diseases (67%). Ukrainians have a high prevalence of risk factors for NCDs ranking among the highest levels reported by the World Health Organization (WHO) in the European (EU) Region. Cardiovascular disease is one of the key health risks for the conflict-affected Ukrainian population due to significant limitations in access to health care and interruptions in the supply of medicines and resources. The excess mortality observed during the COVID-19 pandemic, due to a combination of viral illness and chronic disease states, is bound to increase exponentially from poorly treated NCDs. In this report, we discuss the impact of the war on the public health of Ukraine and potential interventions to provide remote health assistance to the Ukrainian population.
  •  
8.
  • Schlosser, Pascal, et al. (författare)
  • Genetic studies of paired metabolomes reveal enzymatic and transport processes at the interface of plasma and urine
  • 2023
  • Ingår i: Nature Genetics. - 1546-1718. ; 55:6, s. 995-1008
  • Tidskriftsartikel (refereegranskat)abstract
    • The kidneys operate at the interface of plasma and urine by clearing molecular waste products while retaining valuable solutes. Genetic studies of paired plasma and urine metabolomes may identify underlying processes. We conducted genome-wide studies of 1,916 plasma and urine metabolites and detected 1,299 significant associations. Associations with 40% of implicated metabolites would have been missed by studying plasma alone. We detected urine-specific findings that provide information about metabolite reabsorption in the kidney, such as aquaporin (AQP)-7-mediated glycerol transport, and different metabolomic footprints of kidney-expressed proteins in plasma and urine that are consistent with their localization and function, including the transporters NaDC3 (SLC13A3) and ASBT (SLC10A2). Shared genetic determinants of 7,073 metabolite-disease combinations represent a resource to better understand metabolic diseases and revealed connections of dipeptidase 1 with circulating digestive enzymes and with hypertension. Extending genetic studies of the metabolome beyond plasma yields unique insights into processes at the interface of body compartments.
  •  
9.
  • Taskinen, Marja-Riitta, et al. (författare)
  • Effects of Evolocumab on the Postprandial Kinetics of Apo (Apolipoprotein) B100- and B48-Containing Lipoproteins in Subjects With Type 2 Diabetes.
  • 2021
  • Ingår i: Arteriosclerosis, thrombosis, and vascular biology. - 1524-4636.
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased risk of atherosclerotic cardiovascular disease in subjects with type 2 diabetes is linked to elevated levels of triglyceride-rich lipoproteins and their remnants. The metabolic effects of PCSK9 (proprotein convertase subtilisin/kexin 9) inhibitors on this dyslipidemia were investigated using stable-isotope-labeled tracers. Approach and Results: Triglyceride transport and the metabolism of apos (apolipoproteins) B48, B100, C-III, and E after a fat-rich meal were investigated before and on evolocumab treatment in 13 subjects with type 2 diabetes. Kinetic parameters were determined for the following: apoB48 in chylomicrons; triglyceride in VLDL1 (very low-density lipoprotein) and VLDL2; and apoB100 in VLDL1, VLDL2, IDL (intermediate-density lipoprotein), and LDL (low-density lipoprotein). Evolocumab did not alter the kinetics of apoB48 in chylomicrons or apoB100 or triglyceride in VLDL1. In contrast, the fractional catabolic rates of VLDL2-apoB100 and VLDL2-triglyceride were both increased by about 45%, which led to a 28% fall in the VLDL2 plasma level. LDL-apoB100 was markedly reduced by evolocumab, which was linked to metabolic heterogeneity in this fraction. Evolocumab increased clearance of the more rapidly metabolized LDL by 61% and decreased production of the more slowly cleared LDL by 75%. ApoC-III kinetics were not altered by evolocumab, but the apoE fractional catabolic rates increased by 45% and the apoE plasma level fell by 33%. The apoE fractional catabolic rates was associated with the decrease in VLDL2- and IDL-apoB100 concentrations.Evolocumab had only minor effects on lipoproteins that are involved in triglyceride transport (chylomicrons and VLDL1) but, in contrast, had a profound impact on lipoproteins that carry cholesterol (VLDL2, IDL, LDL). Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02948777.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy