SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Krupinski Nadine Quintana) srt2:(2017)"

Sökning: WFRF:(Krupinski Nadine Quintana) > (2017)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Filipsson, Helena L., et al. (författare)
  • Geochemical composition of Baltic benthic foraminifera collected and cultured over a large salinity gradient.
  • 2017
  • Konferensbidrag (refereegranskat)abstract
    • Some of the most significant challenges in paleoclimate research arise from the need to both understand and reduce the uncertainty associated with proxies for climate reconstructions. These challenges were further highlighted in connection with the IODP Exp.347 Baltic Sea Paleoenvironment. We have investigated temperature and salinity proxies through a combination of field-and culture-based benthic foraminiferal samplesfrom the Baltic(sal. 14)-Kattegat(sal. 32), together with genetic characterization. Two long-term experiments at twotemperatures and three salinities were performed. We present foraminiferal assemblage,trace element (Mg/Ca, Ba/Ca, Mn/Ca),and stable O and C isotope results from these locations, including LA-ICP-MS data from cultured specimens. Furthermore, specimens of Elphidium and Ammonia were genetically characterized; the results indicate that the same genetic type of Elphidiumis found in both salinity regimes, but that the Ammoniagenetic types differ depending on the prevailing salinity regime.
  •  
2.
  • Kotthoff, U., et al. (författare)
  • Reconstructing Holocene temperature and salinity variations in the western Baltic Sea region: a multi-proxy comparison from the Little Belt (IODP Expedition 347, Site M0059)
  • 2017
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 14, s. 5607-5632
  • Tidskriftsartikel (refereegranskat)abstract
    • Sediment records recovered from the Baltic Sea during Integrated Ocean Drilling Program Expedition 347 provide a unique opportunity to study paleoenvironmental and climate change in central and northern Europe. Such studies contribute to a better understanding of how environmental parameters change in continental shelf seas and enclosed basins. Here we present a multi-proxy-based reconstruction of paleotemperature (both marine and terrestrial), paleosalinity, and paleoecosystem changes from the Little Belt (Site M0059) over the past  ∼  8000 years and evaluate the applicability of inorganic- and organic-based proxies in this particular setting. All salinity proxies (diatoms, aquatic palynomorphs, ostracods, diol index) show that lacustrine conditions occurred in the Little Belt until  ∼  7400 cal yr BP. A connection to the Kattegat at this time can thus be excluded, but a direct connection to the Baltic Proper may have existed. The transition to the brackish–marine conditions of the Littorina Sea stage (more saline and warmer) occurred within  ∼  200 years when the connection to the Kattegat became established after  ∼  7400 cal yr BP. The different salinity proxies used here generally show similar trends in relative changes in salinity, but often do not allow quantitative estimates of salinity. The reconstruction of water temperatures is associated with particularly large uncertainties and variations in absolute values by up to 8 °C for bottom waters and up to 16 °C for surface waters. Concerning the reconstruction of temperature using foraminiferal Mg  /  Ca ratios, contamination by authigenic coatings in the deeper intervals may have led to an overestimation of temperatures. Differences in results based on the lipid paleothermometers (long chain diol index and TEXL86) can partly be explained by the application of modern-day proxy calibrations to intervals that experienced significant changes in depositional settings: in the case of our study, the change from freshwater to marine conditions. Our study shows that particular caution has to be taken when applying and interpreting proxies in coastal environments and marginal seas, where water mass conditions can experience more rapid and larger changes than in open ocean settings. Approaches using a multitude of independent proxies may thus allow a more robust paleoenvironmental assessment.
  •  
3.
  • van Helmond, Niels A G M, et al. (författare)
  • Seasonal hypoxia was a natural feature of the coastal zone in the Little Belt, Denmark, during the past 8 ka
  • 2017
  • Ingår i: Marine Geology. - : Elsevier. - 0025-3227 .- 1872-6151. ; 387, s. 45-57
  • Tidskriftsartikel (refereegranskat)abstract
    • The extent of the hypoxic area in the Baltic Sea has rapidly expanded over the past century. Two previous phases of widespread hypoxia, coinciding with the Holocene Thermal Maximum (HTM; 8–4 ka before present; BP) and the Medieval Climate Anomaly (MCA; 2–0.8 ka BP), have been identified. Relatively little is known about bottom water redox conditions in the coastal zone of the Baltic Sea during the Holocene, however. Here we studied the geochemical composition of a sediment sequence from a currently seasonally hypoxic site in the Danish coastal zone, the Little Belt, retrieved during Integrated Ocean Drilling Program Expedition 347 (Site M0059). The base of the studied sediment sequence consists of clays low in organic carbon (Corg), molybdenum (Mo) and iron sulfides (Fe-sulfides), and rich in iron oxides (Fe-oxides), indicative of a well-oxygenated, oligotrophic (glacial) meltwater lake. An erosional unconformity separates the glacial lake sediments from sediments that are rich in Corg. The absence of Mo, in combination with high Corg/S values, indicates that these sediments were deposited in a highly productive, well-oxygenated freshwater lake. The transition to modern brackish/marine conditions was very rapid, and subsequent continuous sequestration of Mo in the sediment and high ratios of reactive iron (FeHR) over total Fe (FeTOT) suggest (seasonal) hypoxia occurred over the last ~ 8 ka. Maxima in sediment Corg, Mo and FeHR/FeTOT ratios during the HTM and MCA suggest that the hypoxia intensified. Our results demonstrate that the Little Belt is naturally susceptible to the development of seasonal hypoxia. While periods of climatic warming led to increased deoxygenation of bottom waters, high nutrient availability in combination with density stratification were likely the main drivers of hypoxia in this part of the coastal zone of the Baltic Sea during the Holocene.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy