SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kuhl H. S.) srt2:(2020-2021)"

Sökning: WFRF:(Kuhl H. S.) > (2020-2021)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sabatini, F. M., et al. (författare)
  • sPlotOpen - An environmentally balanced, open-access, global dataset of vegetation plots
  • 2021
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238.
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation Assessing biodiversity status and trends in plant communities is critical for understanding, quantifying and predicting the effects of global change on ecosystems. Vegetation plots record the occurrence or abundance of all plant species co-occurring within delimited local areas. This allows species absences to be inferred, information seldom provided by existing global plant datasets. Although many vegetation plots have been recorded, most are not available to the global research community. A recent initiative, called 'sPlot', compiled the first global vegetation plot database, and continues to grow and curate it. The sPlot database, however, is extremely unbalanced spatially and environmentally, and is not open-access. Here, we address both these issues by (a) resampling the vegetation plots using several environmental variables as sampling strata and (b) securing permission from data holders of 105 local-to-regional datasets to openly release data. We thus present sPlotOpen, the largest open-access dataset of vegetation plots ever released. sPlotOpen can be used to explore global diversity at the plant community level, as ground truth data in remote sensing applications, or as a baseline for biodiversity monitoring. Main types of variable contained Vegetation plots (n = 95,104) recording cover or abundance of naturally co-occurring vascular plant species within delimited areas. sPlotOpen contains three partially overlapping resampled datasets (c. 50,000 plots each), to be used as replicates in global analyses. Besides geographical location, date, plot size, biome, elevation, slope, aspect, vegetation type, naturalness, coverage of various vegetation layers, and source dataset, plot-level data also include community-weighted means and variances of 18 plant functional traits from the TRY Plant Trait Database. Spatial location and grain Global, 0.01-40,000 m(2). Time period and grain 1888-2015, recording dates. Major taxa and level of measurement 42,677 vascular plant taxa, plot-level records. Software format Three main matrices (.csv), relationally linked.
  •  
2.
  • Botvinik-Nezer, Rotem, et al. (författare)
  • Variability in the analysis of a single neuroimaging dataset by many teams
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 582, s. 84-88
  • Tidskriftsartikel (refereegranskat)abstract
    • Data analysis workflows in many scientific domains have become increasingly complex and flexible. Here we assess the effect of this flexibility on the results of functional magnetic resonance imaging by asking 70 independent teams to analyse the same dataset, testing the same 9 ex-ante hypotheses(1). The flexibility of analytical approaches is exemplified by the fact that no two teams chose identical workflows to analyse the data. This flexibility resulted in sizeable variation in the results of hypothesis tests, even for teams whose statistical maps were highly correlated at intermediate stages of the analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Notably, a meta-analytical approach that aggregated information across teams yielded a significant consensus in activated regions. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset(2-5). Our findings show that analytical flexibility can have substantial effects on scientific conclusions, and identify factors that may be related to variability in the analysis of functional magnetic resonance imaging. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for performing and reporting multiple analyses of the same data. Potential approaches that could be used to mitigate issues related to analytical variability are discussed. The results obtained by seventy different teams analysing the same functional magnetic resonance imaging dataset show substantial variation, highlighting the influence of analytical choices and the importance of sharing workflows publicly and performing multiple analyses.
  •  
3.
  • Plumptre, A. J., et al. (författare)
  • Where Might We Find Ecologically Intact Communities?
  • 2021
  • Ingår i: Frontiers in Forests and Global Change. - : Frontiers Media SA. - 2624-893X. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Conservation efforts should target the few remaining areas of the world that represent outstanding examples of ecological integrity and aim to restore ecological integrity to a much broader area of the world with intact habitat and minimal species loss while this is still possible. There have been many assessments of "intactness" in recent years but most of these use measures of anthropogenic impact at a site, rather than faunal intactness or ecological integrity. This paper makes the first assessment of faunal intactness for the global terrestrial land surface and assesses how many ecoregions have sites that could qualify as Key Biodiversity Areas (KBAs - sites contributing significantly to the global persistence of biodiversity) based on their outstanding ecological integrity (under KBA Criterion C). Three datasets are combined on species loss at sites to create a new spatially explicit map of numbers of species extirpated. Based on this map it is estimated that no more than 2.9% of the land surface can be considered to be faunally intact. Additionally, using habitat/density distribution data for 15 large mammals we also make an initial assessment of areas where mammal densities are reduced, showing a further decrease in surface area to 2.8% of the land surface that could be considered functionally intact. Only 11% of the functionally intact areas that were identified are included within existing protected areas, and only 4% within existing KBAs triggered by other criteria. Our findings show that the number of ecoregions that could qualify as Criterion C KBAs could potentially increase land area up to 20% if their faunal composition was restored with the reintroduction of 1-5 species. Hence, if all necessary requirements are met in order to reintroduce species and regain faunal integrity, this will increase ecological integrity across much of the area where human impacts are low (human footprint <= 4). Focusing restoration efforts in these areas could significantly increase the area of the planet with full ecological integrity.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy