SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kuiper R.) srt2:(2020-2024)"

Sökning: WFRF:(Kuiper R.) > (2020-2024)

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Marleau, G.-D., et al. (författare)
  • Accreting protoplanets : Spectral signatures and magnitude of gas and dust extinction at H α
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 657
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Accreting planetary-mass objects have been detected at H α, but targeted searches have mainly resulted in non-detections. Accretion tracers in the planetary-mass regime could originate from the shock itself, making them particularly susceptible to extinction by the accreting material. High-resolution (R > 50 000) spectrographs operating at H α should soon enable one to study how the incoming material shapes the line profile.Aims. We calculate how much the gas and dust accreting onto a planet reduce the H α flux from the shock at the planetary surface and how they affect the line shape. We also study the absorption-modified relationship between the H α luminosity and accretion rate.Methods. We computed the high-resolution radiative transfer of the H α line using a one-dimensional velocity–density–temperature structure for the inflowing matter in three representative accretion geometries: spherical symmetry, polar inflow, and magnetospheric accretion. For each, we explored the wide relevant ranges of the accretion rate and planet mass. We used detailed gas opacities and carefully estimated possible dust opacities.Results. At accretion rates of Ṁ ≲ 3 × 10−6 MJ yr−1, gas extinction is negligible for spherical or polar inflow and at most AH α ≲ 0.5 mag for magnetospheric accretion. Up to Ṁ ≈ 3 × 10−4 MJ yr−1, the gas contributes AH α ≲ 4 mag. This contribution decreases with mass. We estimate realistic dust opacities at H α to be κ ~ 0.01–10 cm2 g−1, which is 10–104 times lower than in the interstellar medium. Extinction flattens the LH α –Ṁ relationship, which becomes non-monotonic with a maximum luminosity LH α ~ 10−4 L⊙ towards Ṁ ≈ 10−4 MJ yr−1 for a planet mass ~10 MJ. In magnetospheric accretion, the gas can introduce features in the line profile, while the velocity gradient smears them out in other geometries.Conclusions. For a wide part of parameter space, extinction by the accreting matter should be negligible, simplifying the interpretation of observations, especially for planets in gaps. At high Ṁ, strong absorption reduces the H α flux, and some measurements can be interpreted as two Ṁ values. Highly resolved line profiles (R ~ 105) can provide (complex) constraints on the thermal and dynamical structure of the accretion flow.
  •  
6.
  • Kuiper, Jan J., 1987-, et al. (författare)
  • Biosphere Futures : a database of social-ecological scenarios
  • 2024
  • Ingår i: Ecology and Society. - 1708-3087. ; 29:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Biosphere Futures (https://biospherefutures.net/) is a new online database to collect and discover scenario studies from across the world, with a specific focus on scenarios that explicitly incorporate interdependencies between humans and their supporting ecosystems. It provides access to a globally diverse collection of case studies that includes most ecosystems and regions, enabling exploration of the multifaceted ways in which the future might unfold. Together, the case studies illuminate the diversity and plurality of people’s expectations and aspirations for the future. The objective of Biosphere Futures is to promote the use of scenarios for sustainable development of the biosphere and to foster a community of practice around social-ecological scenarios. We do so by facilitating the assessment, synthesis, and comparative analysis of scenario case studies, pointing to relevant resources, and by helping practitioners and researchers to disseminate and showcase their own work. This article begins by outlining the rationale behind the creation of the database, followed by an introduction to its functionality and the criteria employed for selecting case studies. Subsequently, we present a synthesis of the first 100 case studies included in the scenarios database, highlighting emerging patterns and identifying potential avenues for further research. Finally, given that broader utilization and contributions to the database will enhance the achievement of Biosphere Futures’ objectives, we invite the creators of social-ecological scenarios to contribute additional case studies. By expanding the database’s breadth and depth, we can collectively foster a more nuanced understanding of the possible trajectories of our biosphere and enable better decision making for sustainable development.
  •  
7.
  • Nordeide Kuiper, I., et al. (författare)
  • Lifelong exposure to air pollution and greenness in relation to asthma, rhinitis and lung function in adulthood
  • 2021
  • Ingår i: Environmental International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 146
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: To investigate if air pollution and greenness exposure from birth till adulthood affects adult asthma, rhinitis and lung function. Methods: We analysed data from 3428 participants (mean age 28) in the RHINESSA study in Norway and Sweden. Individual mean annual residential exposures to nitrogen dioxide (NO2), particulate matter (PM10 and PM2.5), black carbon (BC), ozone (O3) and greenness (normalized difference vegetation index (NDVI)) were averaged across susceptibility windows (0–10 years, 10–18 years, lifetime, adulthood (year before study participation)) and analysed in relation to physician diagnosed asthma (ever/allergic/non-allergic), asthma attack last 12 months, current rhinitis and low lung function (lower limit of normal (LLN), z-scores of forced expiratory volume in one second (FEV1), forced vital capacity (FVC) and FEV1/FVC below 1.64). We performed logistic regression for asthma attack, rhinitis and LLN lung function (clustered with family and study centre), and conditional logistic regression with a matched case-control design for ever/allergic/non-allergic asthma. Multivariable models were adjusted for parental asthma and education. Results: Childhood, adolescence and adult exposure to NO2, PM10 and O3 were associated with an increased risk of asthma attacks (ORs between 1.29 and 2.25), but not with physician diagnosed asthma. For rhinitis, adulthood exposures seemed to be most important. Childhood and adolescence exposures to PM2.5 and O3 were associated with lower lung function, in particular FEV1 (range ORs 2.65 to 4.21). No associations between NDVI and asthma or rhinitis were revealed, but increased NDVI was associated with lower FEV1 and FVC in all susceptibility windows (range ORs 1.39 to 1.74). Conclusions: Air pollution exposures in childhood, adolescence and adulthood were associated with increased risk of asthma attacks, rhinitis and low lung function in adulthood. Greenness was not associated with asthma or rhinitis, but was a risk factor for low lung function. © 2020 The Authors
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy