SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kullander J) srt2:(2020-2023)"

Sökning: WFRF:(Kullander J) > (2020-2023)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Artedi, Peter, et al. (författare)
  • Ichthyologia
  • 2022
  • Bok (övrigt vetenskapligt/konstnärligt)
  •  
2.
  • Yamamuro, Kazuhiko, et al. (författare)
  • A prefrontal-paraventricular thalamus circuit requires juvenile social experience to regulate adult sociability in mice
  • 2020
  • Ingår i: Nature Neuroscience. - : Springer Science and Business Media LLC. - 1097-6256 .- 1546-1726. ; 23:10, s. 1240-1252
  • Tidskriftsartikel (refereegranskat)abstract
    • Juvenile social isolation reduces sociability in adulthood, but the underlying neural circuit mechanisms are poorly understood. We found that, in male mice, 2 weeks of social isolation immediately following weaning leads to a failure to activate medial prefrontal cortex neurons projecting to the posterior paraventricular thalamus (mPFC→pPVT) during social exposure in adulthood. Chemogenetic or optogenetic suppression of mPFC→pPVT activity in adulthood was sufficient to induce sociability deficits without affecting anxiety-related behaviors or preference toward rewarding food. Juvenile isolation led to both reduced excitability of mPFC→pPVT neurons and increased inhibitory input drive from low-threshold-spiking somatostatin interneurons in adulthood, suggesting a circuit mechanism underlying sociability deficits. Chemogenetic or optogenetic stimulation of mPFC→pPVT neurons in adulthood could rescue the sociability deficits caused by juvenile isolation. Our study identifies a pair of specific medial prefrontal cortex excitatory and inhibitory neuron populations required for sociability that are profoundly affected by juvenile social experience.
  •  
3.
  • Carneiro, Miguel, et al. (författare)
  • A loss-of-function mutation in RORB disrupts saltatorial locomotion in rabbits
  • 2021
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 17:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Saltatorial locomotion is a type of hopping gait that in mammals can be found in rabbits, hares, kangaroos, and some species of rodents. The molecular mechanisms that control and fine-tune the formation of this type of gait are unknown. Here, we take advantage of one strain of domesticated rabbits, the sauteur d’Alfort, that exhibits an abnormal locomotion behavior defined by the loss of the typical jumping that characterizes wild-type rabbits. Strikingly, individuals from this strain frequently adopt a bipedal gait using their front legs. Using a combination of experimental crosses and whole genome sequencing, we show that a single locus containing the RAR related orphan receptor B gene (RORB) explains the atypical gait of these rabbits. We found that a splice-site mutation in an evolutionary conserved site of RORB results in several aberrant transcript isoforms incorporating intronic sequence. This mutation leads to a drastic reduction of RORB-positive neurons in the spinal cord, as well as defects in differentiation of populations of spinal cord interneurons. Our results show that RORB function is required for the performance of saltatorial locomotion in rabbits.Author summaryRabbits and hares have a characteristic jumping gait composed of an alternate rhythmical movement of the forelimbs and a synchronous bilateral movement of the hindlimbs. We have now characterized a recessive mutation present in a specific strain of domestic rabbits (sauteur d’Alfort) that disrupts the jumping gait. The mutation causing this defect in locomotion pattern occurs in the gene coding for the transcription factor RORB that is normally expressed in many regions of the nervous system especially in the spinal cord dorsal horn. Our results show that expression of RORB is drastically reduced in the spinal cord of affected rabbits which results in a developmental defect. This study is an advance in our understanding how locomotion is controlled in vertebrates.
  •  
4.
  •  
5.
  • Malfatti, Thawann, et al. (författare)
  • Using Cortical Neuron Markers to Target Cells in the Dorsal Cochlear Nucleus
  • 2021
  • Ingår i: eNeuro. - : Society for Neuroscience. - 2373-2822. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The dorsal cochlear nucleus (DCN) is a region of particular interest for auditory and tinnitus research. However, lack of useful genetic markers for in vivo manipulations hinders elucidation of the DCN contribution to tinnitus pathophysiology. This work assesses whether adeno-associated viral vectors (AAV) containing the calcium/calmodulin-dependent protein kinase 2 alpha (CaMKII alpha) promoter and a mouse line of nicotinic acetylcholine receptor alpha 2 subunit (Chrna2)-Cre can target specific DCN populations. We found that CaMKII alpha cannot be used to target excitatory fusiform DCN neurons as labeled cells showed diverse morphology indicating they belong to different classes of DCN neurons. Light stimulation after driving Channelrhodopsin2 (ChR2) by the CaMKIIa promoter generated spikes in some units but firing rate decreased when light stimulation coincided with sound. Expression and activation of CaMKII alpha-eArchaerhodopsin3.0 in the DCN produced inhibition in some units but sound-driven spikes were delayed by concomitant light stimulation. We explored the existence of Cre+ cells in the DCN of Chrna2-Cre mice by hydrogel embedding technique (CLARITY). There were almost no Cre+ cell bodies in the DCN; however, we identified profuse projections arising from the ventral cochlear nucleus (VCN). Anterograde labeling in the VCN revealed projections to the ipsilateral superior olive and contralateral medial nucleus of the trapezoid body (MNTB; bushy cells), and a second bundle terminating in the DCN, suggesting the latter to be excitatory Chrna2+ T-stellate cells. Exciting Chrna2+ cells increased DCN firing. This work shows that cortical molecular tools may be useful for manipulating the DCN especially for tinnitus studies.
  •  
6.
  • Rabe Bernhardt, Nadine, 1978-, et al. (författare)
  • Hop Mice Display Synchronous Hindlimb Locomotion and a Ventrally Fused Lumbar Spinal Cord Caused by a Point Mutation in Ttc26
  • 2022
  • Ingår i: eNeuro. - : Society for Neuroscience. - 2373-2822. ; 9:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying the spinal circuits controlling locomotion is critical for unravelling the mechanisms controlling the production of gaits. Development of the circuits governing left-right coordination relies on axon guidance molecules such as ephrins and netrins. To date, no other class of proteins have been shown to play a role during this process. Here, we have analyzed hop mice, which walk with a characteristic hopping gait using their hindlimbs in synchrony. Fictive locomotion experiments suggest that a local defect in the ventral spinal cord contributes to the aberrant locomotor phenotype. Hop mutant spinal cords had severe morphologic defects, including the absence of the ventral midline and a poorly defined border between white and gray matter. The hop mice represent the first model where, exclusively found in the lumbar domain, the left and right components of the central pattern generators (CPGs) are fused with a synchronous hindlimb gait as a functional consequence. These defects were associated with abnormal developmental processes, including a misplaced notochord and reduced induction of ventral progenitor domains. Whereas the underlying mutation in hop mice has been suggested to lie within the Ttc26 gene, other genes in close vicinity have been associated with gait defects. Mouse embryos carrying a CRISPR replicated point mutation within Ttc26 displayed an identical morphologic phenotype. Thus, our data suggest that the assembly of the lumbar CPG network is dependent on fully functional TTC26 protein.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy