SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kumar Arvind) srt2:(2007-2009)"

Sökning: WFRF:(Kumar Arvind) > (2007-2009)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Kremkow, Jens, et al. (författare)
  • Emergence of population synchrony in a layered network of the cat visual cortex
  • 2007
  • Ingår i: Neurocomputing. - : Elsevier BV. - 0925-2312 .- 1872-8286. ; 70:10-12, s. 2069-2073
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, a quantitative wiring diagram for the local neuronal network of cat visual cortex was described [T. Binzegger, R.J. Douglas, K.A.C. Martin, A quantitative map of the circuit of the cat primary visual cortex, J. Neurosci. 39 (24) (2004) 8441-8453.] giving the first complete estimate of synaptic connectivity among various types of neurons in different cortical layers. Here we numerically studied the activity dynamics of the resulting heterogeneous layered network of spiking integrate-and-fire neurons, connected with conductance-based synapses. The layered network exhibited, among other states, an interesting asynchronous activity with intermittent population-wide synchronizations. These population bursts (PB) were initiated by a network hot spot, and then spread into the other parts of the network. The cause of this PB is the correlation amplifying nature of recurrent connections, which becomes significant in densely coupled networks. The hot spot was located in layer 2 / 3, the part of the network with the highest number of excitatory recurrent connections. We conclude that in structured networks, regions with a high degree of recurrence and many out-going fibres may be a source for population-wide synchronization.
  •  
4.
  • Kumar, Arvind, et al. (författare)
  • Conditions for propagating synchronous spiking and asynchronous firing rates in a cortical network model
  • 2008
  • Ingår i: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 28:20, s. 5268-5280
  • Tidskriftsartikel (refereegranskat)abstract
    • Isolated feedforward networks (FFNs) of spiking neurons have been studied extensively for their ability to propagate transient synchrony and asynchronous firing rates, in the presence of activity independent synaptic background noise (Diesmann et al., 1999; van Rossum et al., 2002). In a biologically realistic scenario, however, the FFN should be embedded in a recurrent network, such that the activity in the FFN and the network activity may dynamically interact. Previously, transient synchrony propagating in an FFN was found to destabilize the dynamics of the embedding network (Mehring et al., 2003). Here, we show that by modeling synapses as conductance transients, rather than current sources, it is possible to embed and propagate transient synchrony in the FFN, without destabilizing the background network dynamics. However, the network activity has a strong impact on the type of activity that can be propagated in the embedded FFN. Global synchrony and high firing rates in the embedding network prohibit the propagation of both, synchronous and asynchronous spiking activity. In contrast, asynchronous low-rate network states support the propagation of both, synchronous spiking and asynchronous, but only low firing rates. In either case, spiking activity tends to synchronize as it propagates, challenging the feasibility to transmit information in asynchronous firing rates. Finally, asynchronous network activity allows to embed more than one FFN, with the amount of cross talk depending on the degree of overlap in the FFNs. This opens the possibility of computational mechanisms using transient synchrony among the activities in multiple FFNs.
  •  
5.
  • Kumar, Arvind, et al. (författare)
  • The high-conductance state of cortical networks
  • 2008
  • Ingår i: Neural Computation. - : MIT Press - Journals. - 0899-7667 .- 1530-888X. ; 20, s. 1-43
  • Tidskriftsartikel (refereegranskat)abstract
    • We studied the dynamics of large networks of spiking neurons with conductance-based (nonlinear) synapses and compared them to networks with current-based (linear) synapses. For systems with sparse and inhibition-dominated recurrent connectivity, weak external inputs induced asynchronous irregular firing at low rates. Membrane potentials fluctuated a few millivolts below threshold, and membrane conductances were increased by a factor 2 to 5 with respect to the resting state. This combination of parameters characterizes the ongoing spiking activity typically recorded in the cortex in vivo. Many aspects of the asynchronous irregular state in conductance-based networks could be sufficiently well characterized with a simple numerical mean field approach. In particular, it correctly predicted an intriguing property of conductance-based networks that does not appear to be shared by current-based models: they exhibit states of low-rate asynchronous irregular activity that persist for some period of time even in the absence of external inputs and without cortical pacemakers. Simulations of larger networks (up to 350,000 neurons) demonstrated that the survival time of self-sustained activity increases exponentially with network size.
  •  
6.
  • Meier, Ralph, et al. (författare)
  • Comparison of dynamical states of random networks with human EEG
  • 2007
  • Ingår i: Neurocomputing. - : Elsevier BV. - 0925-2312 .- 1872-8286. ; 70:10-12, s. 1843-1847
  • Tidskriftsartikel (refereegranskat)abstract
    • Existing models of EEG have mainly focused on relations to network dynamics characterized by firing rates [L. de Arcangelis, H.J. Herrmann, C. Perrone-Capano, Activity-dependent brain model explaining EEG spectra, arXiv:q-bio.NC/0411043 v1, 23 Nov 2004; D.T. Liley, D.M. Alexander, J.J. Wright, M.D. Aldous, Alpha rhythm emerges from large-scale networks of realistically coupled multicompartmental model cortical neurons, Network 10(1) (1999) 79-92; O. David, J.K. Friston, A neural mass model for MEG/EEG: coupling and neuronal dynamics, NeuroImage 20 (2003) 1743-1755]. Generally, these models assume that there exists a linear mapping between network firing rates and EEG states. However, firing rate is only one of several descriptors for network activity states. Other relevant descriptors are synchrony and irregularity of firing patterns [N. Brunel, Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons, J. Comput. Neurosci. 8(3) (2000) 183-208]. To develop a better understanding of the EEG we need to relate these state descriptors to EEG states. Here, we try to go beyond the firing rate based approaches described in [D.T. Liley, D.M. Alexander, J.J. Wright, M.D. Aldous, Alpha rhythm emerges from large-scale networks of realistically coupled multicompartmental model cortical neurons, Network 10(1) (1999) 79-92; O. David, J.K. Friston, A neural mass model for MEG/EEG: coupling and neuronal dynamics, NeuroImage 20 (2003) 1743-1755] and relate synchronicity and irregularity in the network to EEG states. We show that the transformation between network activity and EEG can be approximately mediated by linear kernel with the shape of an α- or γ-function, allowing us a comparison between EEG states and network activity space. We find that the simulated EEG generated from asynchronous irregular type network activity is closely related to the human EEG recorded in the awake state, evaluated using power spectral density characteristics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy