SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kutsch W.) srt2:(2005-2009)"

Sökning: WFRF:(Kutsch W.) > (2005-2009)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Luyssaert, S., et al. (författare)
  • CO2 balance of boreal, temperate, and tropical forests derived from a global database
  • 2007
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 13:12, s. 2509-2537
  • Forskningsöversikt (refereegranskat)abstract
    • Terrestrial ecosystems sequester 2.1 Pg of atmospheric carbon annually. A large amount of the terrestrial sink is realized by forests. However, considerable uncertainties remain regarding the fate of this carbon over both short and long timescales. Relevant data to address these uncertainties are being collected at many sites around the world, but syntheses of these data are still sparse. To facilitate future synthesis activities, we have assembled a comprehensive global database for forest ecosystems, which includes carbon budget variables (fluxes and stocks), ecosystem traits (e.g. leaf area index, age), as well as ancillary site information such as management regime, climate, and soil characteristics. This publicly available database can be used to quantify global, regional or biome-specific carbon budgets; to re-examine established relationships; to test emerging hypotheses about ecosystem functioning [e.g. a constant net ecosystem production (NEP) to gross primary production (GPP) ratio]; and as benchmarks for model evaluations. In this paper, we present the first analysis of this database. We discuss the climatic influences on GPP, net primary production (NPP) and NEP and present the CO2 balances for boreal, temperate, and tropical forest biomes based on micrometeorological, ecophysiological, and biometric flux and inventory estimates. Globally, GPP of forests benefited from higher temperatures and precipitation whereas NPP saturated above either a threshold of 1500 mm precipitation or a mean annual temperature of 10 degrees C. The global pattern in NEP was insensitive to climate and is hypothesized to be mainly determined by nonclimatic conditions such as successional stage, management, site history, and site disturbance. In all biomes, closing the CO2 balance required the introduction of substantial biome-specific closure terms. Nonclosure was taken as an indication that respiratory processes, advection, and non-CO2 carbon fluxes are not presently being adequately accounted for.
  •  
2.
  • Bombelli, A., et al. (författare)
  • An outlook on the Sub-Saharan Africa carbon balance
  • 2009
  • Ingår i: Biogeosciences. - 1726-4189. ; 6:10, s. 2193-2205
  • Tidskriftsartikel (refereegranskat)abstract
    • This study gives an outlook on the carbon balance of Sub-Saharan Africa (SSA) by presenting a summary of currently available results from the project CarboAfrica (namely net ecosystem productivity and emissions from fires, deforestation and forest degradation, by field and model estimates) supplemented by bibliographic data and compared with a new synthesis of the data from national communications to UNFCCC. According to these preliminary estimates the biogenic carbon balance of SSA varies from 0.16 Pg C y(-1) to a much higher sink of 1.00 Pg C y(-1) (depending on the source data). Models estimates would give an unrealistic sink of 3.23 Pg C y(-1), confirming their current inadequacy when applied to Africa. The carbon uptake by forests and savannas (0.34 and 1.89 Pg C y(-1), respectively,) are the main contributors to the resulting sink. Fires (0.72 Pg C y(-1)) and deforestation (0.25 Pg C y(-1)) are the main contributors to the SSA carbon emissions, while the agricultural sector and forest degradation contributes only with 0.12 and 0.08 Pg C y(-1), respectively. Savannas play a major role in shaping the SSA carbon balance, due to their large extension, their fire regime, and their strong interannual NEP variability, but they are also a major uncertainty in the overall budget. Even if fossil fuel emissions from SSA are relative low, they can be crucial in defining the sign of the overall SSA carbon balance by reducing the natural sink potential, especially in the future. This paper shows that Africa plays a key role in the global carbon cycle system and probably could have a potential for carbon sequestration higher than expected, even if still highly uncertain. Further investigations are needed, particularly to better address the role of savannas and tropical forests and to improve biogeochemical models. The CarboAfrica network of carbon measurements could provide future unique data sets for better estimating the African carbon balance.
  •  
3.
  •  
4.
  • Merbold, L., et al. (författare)
  • Precipitation as driver of carbon fluxes in 11 African ecosystems
  • 2009
  • Ingår i: Biogeosciences. - 1726-4189. ; 6:6, s. 1027-1041
  • Tidskriftsartikel (refereegranskat)abstract
    • This study reports carbon and water fluxes between the land surface and atmosphere in eleven different ecosystems types in Sub-Saharan Africa, as measured using eddy covariance (EC) technology in the first two years of the CarboAfrica network operation. The ecosystems for which data were available ranged in mean annual rainfall from 320 mm (Sudan) to 1150 mm (Republic of Congo) and include a spectrum of vegetation types (or land cover) (open savannas, woodlands, croplands and grasslands). Given the shortness of the record, the EC data were analysed across the network rather than longitudinally at sites, in order to understand the driving factors for ecosystem respiration and carbon assimilation, and to reveal the different water use strategies in these highly seasonal environments. Values for maximum net carbon assimilation rates (photosynthesis) ranged from -12.5 mu mol CO2 m(-2) s(-1) in a dry, open Millet cropland (C-4-plants) up to -48 mu mol CO2 m(-2) s(-1) for a tropical moist grassland. Maximum carbon assimilation rates were highly correlated with mean annual rainfall (r(2)=0.74). Maximum photosynthetic uptake rates (Fp(max)) were positively related to satellite-derived f(APAR). Ecosystem respiration was dependent on temperature at all sites, and was additionally dependent on soil water content at sites receiving less than 1000 mm of rain per year. All included ecosystems dominated by C-3-plants, showed a strong decrease in 30-min assimilation rates with increasing water vapour pressure deficit above 2.0 kPa.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy