SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kvernby Sofia) srt2:(2020-2023)"

Sökning: WFRF:(Kvernby Sofia) > (2020-2023)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Almby, Kristina E., et al. (författare)
  • Effects of Gastric Bypass Surgery on the Brain : Simultaneous Assessment of Glucose Uptake, Blood Flow, Neural Activity, and Cognitive Function During Normo- and Hypoglycemia
  • 2021
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 70:6, s. 1265-1277
  • Tidskriftsartikel (refereegranskat)abstract
    • While Roux-en-Y gastric bypass (RYGB) surgery in obese individuals typically improves glycemic control and prevents diabetes, it also frequently causes asymptomatic hypoglycemia. Previous work showed attenuated counterregulatory responses following RYGB. The underlying mechanisms as well as the clinical consequences are unclear. In this study, 11 subjects without diabetes with severe obesity were investigated pre- and post-RYGB during hyperinsulinemic normo-hypoglycemic clamps. Assessments were made of hormones, cognitive function, cerebral blood flow by arterial spin labeling, brain glucose metabolism by F-18-fluorodeoxyglucose (FDG) positron emission tomography, and activation of brain networks by functional MRI. Post- versus presurgery, we found a general increase of cerebral blood flow but a decrease of total brain FDG uptake during normoglycemia. During hypoglycemia, there was a marked increase in total brain FDG uptake, and this was similar for post- and presurgery, whereas hypothalamic FDG uptake was reduced during hypoglycemia. During hypoglycemia, attenuated responses of counterregulatory hormones and improvements in cognitive function were seen postsurgery. In early hypoglycemia, there was increased activation post- versus presurgery of neural networks in brain regions implicated in glucose regulation, such as the thalamus and hypothalamus. The results suggest adaptive responses of the brain that contribute to lowering of glycemia following RYGB, and the underlying mechanisms should be further elucidated.
  •  
2.
  • Kvernby, Sofia, et al. (författare)
  • Quantitative comparison of data-driven gating and external hardware gating for 18F-FDG PET-MRI in patients with esophageal tumors
  • 2021
  • Ingår i: European Journal of Hybrid Imaging. - : Springer Nature. - 2510-3636. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundRespiratory motion during PET imaging reduces image quality. Data-driven gating (DDG) based on principal component analysis (PCA) can be used to identify respiratory signals. The use of DDG, without need for external devices, would greatly increase the feasibility of using respiratory gating in a routine clinical setting. The objective of this study was to evaluate data-driven gating in relation to external hardware gating and regular static image acquisition on PET-MRI data with respect to SUVmax and lesion volumes.MethodsSixteen patients with esophageal or gastroesophageal cancer (Siewert I and II) underwent a 6-min PET scan on a Signa PET-MRI system (GE Healthcare) 1.5-2 h after injection of 4 MBq/kg F-18-FDG. External hardware gating was done using a respiratory bellow device, and DDG was performed using MotionFree (GE Healthcare). The DDG raw data files and the external hardware-gating raw files were created on a Matlab-based toolbox from the whole 6-min scan LIST-file. For comparison, two 3-min static raw files were created for each patient. Images were reconstructed using TF-OSEM with resolution recovery with 2 iterations, 28 subsets, and 3-mm post filter. SUVmax and lesion volume were measured in all visible lesions, and noise level was measured in the liver. Paired t-test, linear regression, Pearson correlation, and Bland-Altman analysis were used to investigate difference, correlation, and agreement between the methods.ResultsA total number of 30 lesions were included in the study. No significant differences between DDG and external hardware-gating SUVmax or lesion volumes were found, but the noise level was significantly reduced in the DDG images. Both DDG and external hardware gating demonstrated significantly higher SUVmax (9.4% for DDG, 10.3% for external hardware gating) and smaller lesion volume (- 5.4% for DDG, - 6.6% for external gating) in comparison with non-gated static images.ConclusionsData-driven gating with MotionFree for PET-MRI performed similar to external device gating for esophageal lesions with respect to SUVmax and lesion volume. Both gating methods significantly increased the SUVmax and reduced the lesion volume in comparison with non-gated static acquisition. DDG resulted in reduced image noise compared to external device gating and static images.
  •  
3.
  •  
4.
  • Nordström, Jonny, et al. (författare)
  • Left ventricular volumes and ejection fraction from cardiac ECG-gated 15O-water positron emission tomography compared to cardiac magnetic resonance imaging using simultaneous hybrid PET/MR
  • 2023
  • Ingår i: Journal of Nuclear Cardiology. - : Springer Nature. - 1071-3581 .- 1532-6551. ; 30:4, s. 1352-1362
  • Tidskriftsartikel (refereegranskat)abstract
    • Background15O-water PET is the gold standard for noninvasive quantification of myocardial blood flow. In addition to evaluation of ischemia, the assessment of cardiac function and remodeling is important in all cardiac diseases. However, since 15O-water is freely diffusible and standard uptake images show little contrast between the myocardium and blood pool, the assessment of left-ventricular (LV) volumes and ejection fraction (EF) is challenging. Therefore, the aim of the present study was to investigate the feasibility of calculating LV volumes and EF from first-pass analysis of 15O-water PET, by comparison with cardiac magnetic resonance imaging (CMR) using a hybrid PET/MR scanner.MethodsTwenty-four patients with known or suspected CAD underwent a simultaneous ECG-gated cardiac PET/MR scan. The 15O-water first-pass images (0-50 seconds) were analyzed using the CarPET software and the CMR images were analyzed using the software Segment, for LV volumes and EF calculations. The LV volumes and EF were compared using correlation and Bland–Altman analysis. In addition, inter- and intra-observer variability of LV volumes and EF were assessed for both modalities.ResultsThe correlation between PET and CMR was strong for volumes (r > 0.84) and moderate for EF (r = 0.52), where the moderate correlation for EF was partly due to the small range of EF values. Agreement was high for all parameters, with a slight overestimation of PET values for end-diastolic volume but with no significant mean bias for other parameters. Inter- and intra-observer agreement of volumes was high and comparable between PET and CMR. For EF, inter-observer agreement was higher for PET and intra-observer agreement was higher for CMR.ConclusionLV volumes and EF can be calculated by first-pass analysis of a 15O-water PET scan with high accuracy and comparable precision as with CMR.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy