SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kyaw T) srt2:(2015-2019)"

Sökning: WFRF:(Kyaw T) > (2015-2019)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kyaw, H H, et al. (författare)
  • The influence of initial gold nanoparticles layer on migration of silver nanoparticles in silver/glass matrix
  • 2019
  • Ingår i: Thin Solid Films. - : Elsevier. - 1879-2731 .- 0040-6090. ; 685, s. 216-224
  • Tidskriftsartikel (refereegranskat)abstract
    • A thin layer of gold nanoparticles (AuNPs) was deposited on glass substrates followed by subsequent deposition of silver nanoparticles (AgNPs) on it. Both AuNPs and AgNPs layers were fabricated by DC magnetron sputtering with inert gas condensation technique. The effect of initial thin layer of AuNPs have on the transformation of AgNPs surface structure by post annealing at 500 degrees C and 600 degrees C in air was investigated. The influence of post annealing temperature on the surface morphology was studied by atomic force microscopy and post annealing at 500 degrees C reduce the size of AgNPs along with the formation of some AgNPs inside the glass matrix. At 600 degrees C, aggregation of AuNPs on the surface was observed and increased in the number of AgNPs that diffused into the glass matrix. X-ray photoelectron spectroscopy was employed to study the surface composition and chemical states. The temperature dependence of Ag diffusion into the glass matrix was characterised and observed by UV-visible absorption spectroscopy and cross sectional transmission electron microscopy. Furthermore, ultraviolet photoelectron spectroscopy revealed a new shoulder related to Au 6 s hybridized with Au 5d and Ag 4d bands in the 1-4 eV regions, which affirmed the metallic character of AgNPs/AuNPs/glass system at higher annealing temperature. By introducing AuNPs on glass prior to AgNPs deposition, novel properties such as limited Ag ion diffusion and evaporation were found and problems previously encountered in AgNPs/glass system were avoided. The proposed AgNPs/AuNPs/glass system can be useful in plasmonic applications such as chroma filters and photonic devices.
  •  
2.
  • Al-Saadi, Mubarak J., et al. (författare)
  • Influence of Atomic Hydrogen, Band Bending, and Defects in the Top Few Nanometers of Hydrothermally Prepared Zinc Oxide Nanorods
  • 2017
  • Ingår i: Nanoscale Research Letters. - : Springer. - 1931-7573 .- 1556-276X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the surface, sub-surface (top few nanometers) and bulk properties of hydrothermally grown zinc oxide (ZnO) nanorods (NRs) prior to and after hydrogen treatment. Upon treating with atomic hydrogen (H*), upward and downward band bending is observed depending on the availability of molecular H2O within the structure of the NRs. In the absence of H2O, the H* treatment demonstrated a cleaning effect of the nanorods, leading to a 0.51 eV upward band bending. In addition, enhancement in the intensity of room temperature photoluminescence (PL) signals due to the creation of new surface defects could be observed. The defects enhanced the visible light activity of the ZnO NRs which were subsequently used to photocatalytically degrade aqueous phenol under simulated sunlight. On the contrary, in the presence of H2O, H* treatment created an electronic accumulation layer inducing downward band bending of 0.45 eV (similar to 1/7th of the bulk ZnO band gap) along with the weakening of the defect signals as observed from room temperature photoluminescence spectra. The results suggest a plausible way of tailoring the band bending and defects of the ZnO NRs through control of H2O/H* species.
  •  
3.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy