SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kyprianidis Konstantinos) srt2:(2008-2009)"

Sökning: WFRF:(Kyprianidis Konstantinos) > (2008-2009)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Celis, Cesar, et al. (författare)
  • Multidisciplinary Design Optimization of Aero Engines : Environmental Performance-Based Methodology
  • 2008
  • Ingår i: SYMKOM’08 Proceedings. CIEPLNE MASZYNY PRZEPLYWOWE. TURBOMACHINERY. No.133.
  • Konferensbidrag (refereegranskat)abstract
    • A methodology and tool that allows evaluating and quantifying aero engines design trade-offs originated as a consequence of addressing conflicting objectives such as low environmental impact and low operating costs is presented, and applied to a general case study to assess the feasibility of using new highly efficient engine configurations: intercooled- recuperated (ICR) engines. The case study results show that according to the ICR systems performance (heat exchangers effectiveness, pressure losses, and weight penalty) they could find usage in practical applications.
  •  
2.
  • Colmenares, Fernando, et al. (författare)
  • Future Aero-Engines’ Optimisation for Minimal Fuel Burn
  • 2008
  • Ingår i: <em><em>A</em></em>SME Turbo Expo 2008: Power for Land, Sea, and AirVolume 2: Controls, Diagnostics and Instrumentation; Cycle Innovations; Electric PowerBerlin, Germany, June 9–13, 2008. - 9780791843123 - 0791838242 ; , s. 411-416
  • Konferensbidrag (refereegranskat)abstract
    • While aircraft environmental performance has been important since the beginnings of commercial aviation, continuously increasing passenger traffic and a rise in public awareness have made aircraft noise and emissions two of the most pressing issues hampering commercial aviation growth today. The air transportation for the new millennium will require revolutionary solutions to meeting public demand for improving safety, reliability, environmental compatibility, and affordability. The objective of this research is to assess the trade-off between operating costs and environmental requirements of the future aero engines for short range commercial aircrafts. This involves optimising the engines’ design point to minimise the block fuel and evaluating the economic and environmental impact. A high by-pass ratio turbofan engine with performance characteristics and technology from the year 2000 was set up as a baseline and compared to very high by-pass ratio turbofans. The results present a great potential benefit of the geared turbofan compared to high BPR one (baseline) to reduce cruise CO2 emissions and noise; however this may involve NOx penalties, that is an increase of 5.1% in comparison to the baseline. The CRTF engine seems to be, at least according to the simulations, a very promising solution in terms of environmental and economical performance. This is one on the series of work that would be carried out on the cycles being assessed in this paper (feasibility study). Further work on the specific technical issues — such as: technological implications — would be published when completed.
  •  
3.
  • Grönstedt, Tomas, 1970, et al. (författare)
  • Low Pressure System Component Advancements and Its Influence on Future Turbofan Engine Emissions
  • 2009
  • Ingår i: Proceedings of ASME Turbo Expo 2009: Power for Land, Sea and Air, GT2009.
  • Konferensbidrag (refereegranskat)abstract
    • Within the European research project EnVIronmenTALly Friendly Aero Engines, VITAL, a number of low pressure system component technologies are being investigated. The emerging progress will allow the design of new power plants providing a step change in engine fuel burn and noise. As part of the VITAL project a Technoeconomic and Environmental Risk Assessment tool, the TERA2020, is being developed. Within this tool, means to assess the impact of component technology progress on the engine/aircraft system level has been implemented. Sensitivities relating parameters traditionally used to describe component performance, such as allowable shaft torque, low pressure turbine stage loading, fan blade weight and system level parameters have been established. This allows a direct assessment of the impact of component research progress on the VITAL power plant CO2 and noise emissions.
  •  
4.
  • Khan, Raja S.R., et al. (författare)
  • An Assessment of the Emissions and Global Warming Potential of Gas Turbines for LNG Applications
  • 2009
  • Konferensbidrag (refereegranskat)abstract
    • This paper concentrates on the emissions module of what is part of a wider project dealing with various aspects of gas turbine usage as drivers for Liquefied Natural Gas (LNG) production. The framework is known as TERA, a Techno-Economic and Environmental Risk Analysis, developed at Cranfield University with the core of the study being the performance module whilst the risk, economics and environmental modules are built around the performance. Whilst TERA exists for aviation and power production no such system is available for assessment of LNG production.With mounting pressures by the way of emissions taxes, new legislation is imminent, especially in Europe. This will mean Oil & Gas firms will have to look for ways to improve their emissions in order to avoid such taxes. One way to reduce turbomachinery losses is to replace dated machinery. The selection of turbomachinery involves assessments of risk, both economic and technical, as well as environmental impacts of the new
  •  
5.
  • Khan, R.S.R., et al. (författare)
  • An Assessment of the Emissions and Global Warming Potential of Gas Turbines for LNG Applications
  • 2009
  • Ingår i: ASME TURBO EXPO 2009 Proceedings, ASME-GT-2009-59184.
  • Konferensbidrag (refereegranskat)abstract
    • This paper concentrates on the emissions module of what is part of a wider project dealing with various aspects of gas turbine usage as drivers for Liquefied Natural Gas (LNG) production. The framework is known as TERA, a Techno-Economic and Environmental Risk Analysis, developed at Cranfield University with the core of the study being the performance module whilst the risk, economics and environmental modules are built around the performance. Whilst TERA exists for aviation and power production no such system is available for assessment of LNG production. With environmental issues high on the public agenda new legislation on emissions can be expected, especially in Europe. This will mean Oil & Gas companies will have to look for ways to reduce their emissions. One way to reduce turbo machinery losses is to replace out dated and/or obsolete machinery having less overall energy efficiency. The selection of turbomachinery involves assessments of risk, both economic and technical, as well as environmental impacts of the new technology. The core to all of this is the performance assessment, the primary basis on which selection is made. An aviation emissions model, developed at Cranfield University, is adapted for industrial applications. Technical performance calculations are made using the inhouse software called Turbomatch. Performance results for three typical days of the year (summer, winter and spring/autumn) are fed into the emissions model to get the levels of NOx, CO2, H2O, CO and unburnt hydrocarbon emissions. Later, NOx, CO2 and H2O emissions levels are fed into the environmental module to estimate the damage the engine causes to the environment over 100 years with respect to global warming. Two hypothetical engine configurations are investigated based on engine data available in the public domain. The first one, an 85MW single spool industrial machine (SSI-85), is used as the baseline to compare against a 100MW triple spool, intercooled aeroderivative (ITSA-100). The results suggest that the ITSA-100 produces more NOx but has less carbon emissions and consequently less global warming effects. This has varied economic impacts depending on which emission is a priority for reduction. CO2 and H2O emissions are more important than NOx for LNG gas turbine applications. The paper shows how this simple but effective system can be utilised to give a viable comparison between one or more proposed solutions for turbomachinery selection and replacement. The scope of the system is expanded as other modules come together to give a total assessment in terms of technical, economic, environmental and risk perspectives for LNG production.
  •  
6.
  • Kyprianidis, Konstantinos, et al. (författare)
  • Dynamic performance investigations of a turbojet engine using a cross-application visual oriented platform
  • 2008
  • Ingår i: Aeronautical Journal. - 0001-9240. ; 112:1129, s. 161-169
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents the development of visual oriented tools for the dynamic performance simulation of a turbojet engine using a cross-application approach. In particular, the study focuses on the feasibility of developing simulation models using different programming environments and linking them together using a popular spreadsheet program. As a result of this effort, a low fidelity cycle program has been created, capable of being integrated with other performance models. The amount of laboratory sessions required for student training during an educational procedure, for example for a course in gas turbine performance simulation, is greatly reduced due to the familiarity of most students with the spreadsheet software. The model results have been validated using commercially available gas turbine simulation software and experimental data from open literature. The most important finding of this study is the capability of the program to link to aircraft performance models and predict the transient working line of the engine for various initial conditions in order to dynamically simulate flight phases including take-off and landing.
  •  
7.
  • Kyprianidis, Konstantinos G., et al. (författare)
  • EVA : A Tool for EnVironmental Assessment of Novel Propulsion Cycles
  • 2008
  • Ingår i: <em><em></em></em>ASME Turbo Expo 2008: Power for Land, Sea, and AirVolume 2: Controls, Diagnostics and Instrumentation; Cycle Innovations; Electric PowerBerlin, Germany, June 9–13, 2008. - 9780791843123 - 0791838242 ; , s. 547-556
  • Konferensbidrag (refereegranskat)abstract
    • This paper presents the development of a tool for EnVironmental Assessment (EVA) of novel propulsion cycles implementing the Technoeconomical Environmental and Risk Analysis (TERA) approach. For nearly 3 decades emissions certification and legislation has been mainly focused on the landing and take-off cycle. Exhaust emissions measurements of NOx, CO and unburned hydrocarbons are taken at Sea Level Static (SLS) conditions for 4 different power settings (idle, descent, approach and take-off) and are consecutively used for calculating the total emissions during the ICAO landing and take-off cycle. With the global warming issue becoming ever more important, stringent emissions legislation is soon to follow, focusing on all flight phases of an aircraft. Unfortunately, emissions measurements at altitude are either extremely expensive, as in the case of altitude test facility measurements, or unrealistic, as in the case of direct in flight measurements. Compensating for these difficulties, various existing methods can be used to estimate emissions at altitude from ground measurements. Such methods, however, are of limited help when it comes to assessing novel propulsion cycles or existing engine configurations with no SLS measurements available. The authors are proposing a simple and fast method for the calculation of SLS emissions, mainly implementing ICAO exhaust emissions data, corrections for combustor inlet conditions and technology factors. With the SLS emissions estimated, existing methods may be implemented to calculate emissions at altitude. The tool developed couples emissions predictions and environmental models together with engine and aircraft performance models in order to estimate the total emissions and Global Warming Potential of novel engine designs during all flight phases (i.e. the whole flight cycle). The engine performance module stands in the center of all information exchange. In this study, EVA and the described emissions prediction methodology have been used for the preliminary design analysis of three spool high bypass ratio turbofan engines. The capability of EVA to radically explore the design space available in novel engine configurations, while accounting for fuel burn and global warming potential during the whole flight cycle of an aircraft, is illustrated.
  •  
8.
  • Kyprianidis, Konstantinos G., et al. (författare)
  • Thermo-Fluid Modelling for Gas Turbines-Part I: Theoretical Foundation and Uncertainty Analysis
  • 2009
  • Ingår i: ASME TURBO EXPO 2009 Proceedings, GT2009-60092.
  • Konferensbidrag (refereegranskat)abstract
    • In this two-part publication, various aspects of thermo-fluidmodelling for gas turbines are described and their impact onperformance calculations and emissions predictions at aircraftsystem level is assessed. Accurate and reliable fluid modellingis essential for any gas turbine performance simulation softwareas it provides a robust foundation for building advanced multidisciplinarymodelling capabilities. Caloric properties forgeneric and semi-generic gas turbine performance simulationcodes can be calculated at various levels of fidelity; selection ofthe fidelity level is dependent upon the objectives of thesimulation and execution time constraints. However, rigorousfluid modelling may not necessarily improve performancesimulation accuracy unless all modelling assumptions andsources of uncertainty are aligned to the same level. Certainmodelling aspects such as the introduction of chemical kinetics,and dissociation effects, may reduce computational speed andthis is of significant importance for radical space explorationand novel propulsion cycle assessment.This paper describes and compares fluid models, based ondifferent levels of fidelity, which have been developed for anindustry standard gas turbine performance simulation code and an environmental assessment tool for novel propulsion cycles.The latter comprises the following modules: engineperformance, aircraft performance, emissions prediction, andenvironmental impact. The work presented aims to fill thecurrent literature gap by: (i) investigating the commonassumptions made in thermo-fluid modelling for gas turbinesand their effect on caloric properties and (ii) assessing theimpact of uncertainties on performance calculations andemissions predictions at aircraft system level.In Part I of this two-part publication, a comprehensiveanalysis of thermo-fluid modelling for gas turbines is presentedand the fluid models developed are discussed in detail.Common technical models, used for calculating caloricproperties, are compared while typical assumptions made influid modelling, and the uncertainties induced, are examined.Several analyses, which demonstrate the effects of composition,temperature and pressure on caloric properties of workingmediums for gas turbines, are presented. The working mediumsexamined include dry air and combustion products for variousfuels and H/C ratios. The errors induced by ignoringdissociation effects are also discussed.
  •  
9.
  • Kyprianidis, Konstantinos G., et al. (författare)
  • Thermo-Fluid Modelling for Gas Turbines-Part II : Impact on Performance Calculations and Emissions Predictions at Aircraft System Level
  • 2009
  • Ingår i: ASME TURBO EXPO 2009 Proceedings, GT-2009-60101. ; , s. 483-494
  • Konferensbidrag (refereegranskat)abstract
    • In this two-part publication, various aspects of thermo-fluidmodelling for gas turbines are described and their impact onperformance calculations and emissions predictions at aircraftsystem level is assessed. Accurate and reliable fluid modellingis essential for any gas turbine performance simulation softwareas it provides a robust foundation for building advanced multidisciplinarymodelling capabilities. Caloric properties forgeneric and semi-generic gas turbine performance simulationcodes can be calculated at various levels of fidelity; selection ofthe fidelity level is dependent upon the objectives of thesimulation and execution time constraints. However, rigorousfluid modelling may not necessarily improve performancesimulation accuracy unless all modelling assumptions andsources of uncertainty are aligned to the same level. Certainmodelling aspects such as the introduction of chemical kinetics,and dissociation effects, may reduce computational speed andthis is of significant importance for radical space explorationand novel propulsion cycle assessment.This paper describes and compares fluid models, based ondifferent levels of fidelity, which have been developed for anindustry standard gas turbine performance simulation code and an environmental assessment tool for novel propulsion cycles.The latter comprises the following modules: engineperformance, aircraft performance, emissions prediction, andenvironmental impact. The work presented aims to fill thecurrent literature gap by: (i) investigating the commonassumptions made in thermo-fluid modelling for gas turbinesand their effect on caloric properties and (ii) assessing theimpact of uncertainties on performance calculations andemissions predictions at aircraft system level.In Part II of this two-part publication, the uncertaintyinduced in performance calculations by common technicalmodels, used for calculating caloric properties, is discussed atengine level. The errors induced by ignoring dissociation areexamined at 3 different levels: i) component level, ii) enginelevel, and iii) aircraft system level. Essentially, an attempt ismade to shed light on the trade-off between improving theaccuracy of a fluid model and the accuracy of a multidisciplinarysimulation at aircraft system level, againstcomputational time penalties. The results obtained demonstratethat accurate modelling of the working fluid is not alwaysessential; the accuracy/uncertainty for an overall engine modelwill always be better than the mean accuracy/uncertainty of the individual component estimates as long as systematic errors arecarefully examined and reduced to acceptable levels to ensureerror propagation does not cause significant discrepancies.Computational time penalties induced by improving theaccuracy of the fluid model as well as the validity of the idealgas assumption for future turbofan engines and novelpropulsion cycles are discussed.
  •  
10.
  • Kyprianidis, Konstantinos, et al. (författare)
  • Low pressure system component advancements and its impact on future turbofan engine emissions
  • 2009
  • Ingår i: XIX International Symposium on Air Breathing Engines (ISABE).
  • Konferensbidrag (refereegranskat)abstract
    • Within the European research project EnVIronmenTALly Friendly Aero Engines, VITAL, a number of low pressure system component technologies are being investigated. The emerging progress will allow the design of new power plants capable of providing a step change in engine fuel burn and noise. As part of the VITAL project a Technoeconomic, Environmental and Risk Assessment tool, the TERA2020, is being developed. Within this tool, means to assess the impact of component technology progress on the engine/aircraft system level has been implemented. Sensitivities relating parameters traditionally used to describe component performance, such as allowable shaft torque, low pressure turbine stage loading, fan blade weight and system level parameters have previously been published. The current paper makes an assessment of the impact of failing to deliver specific technology advancements, as researched under the VITAL project. The impact has been quantified, in terms of power plant noise and CO2 emissions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy