SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Löfroth Per Olov) srt2:(2000-2004)"

Sökning: WFRF:(Löfroth Per Olov) > (2000-2004)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Eriksson, David, et al. (författare)
  • Combined low dose radio- and radioimmunotherapy of experimental HeLa Hep 2 tumours.
  • 2003
  • Ingår i: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 30:6, s. 895-906
  • Tidskriftsartikel (refereegranskat)abstract
    • Radiation therapy of malignant tumours can be delivered by external beam radiation (RT) or radioimmunotherapy (RIT), using nuclides attached to monoclonal antibodies (mAbs). These treatment modalities have now been combined in order to investigate putative therapeutic advantages and elucidate the biological responses involved. Nude mice were transplanted subcutaneously on the back with human HeLa Hep2 tumour cells. RT (3x5 Gy) and/or 100 microg (131)I-labelled mAb H7, against placental alkaline phosphatase, or (131)I-labelled mAb TS1, against cytokeratin, was administered separately or in combination (specific activity of 120-200 MBq/mg antibody). Significant tumour growth retardation was observed both with RT alone and with RIT alone. Combining these regimens enhanced the therapeutic effects further, and a significant reduction in tumour volume could be demonstrated. The tumours were subjected to extensive histochemical and immunohistochemical investigations in order to elucidate changes in biology and histology within them. The following stainings were used: haematoxylin-eosin (morphology), Ki67 (proliferation), M30 (apoptosis), TUNEL (apoptosis) and endoglin (vascularisation). Tumours in the control group grew fast, with an average tumour doubling time of 9 days. These tumours contained large viable tumour cell masses displaying vast proliferation zones of Ki67-positive tumour cells, as well as necrotic regions and small amounts of connective tissue. Apoptotic cells could be identified both with M30 and TUNEL staining. When RT was applied, the growth rate was significantly reduced (doubling time 19 days) and typical alterations in morphology were seen, with a relative increase in connective tissue and a decrease in necrotic regions. Apoptotic cells were identified and a decrease in cell density was also observed. When RIT alone was applied, the growth parameters indicated a longer lasting growth reduction, especially when TS1 was used separately or in combination with H7. The histological appearances of these tumours were somewhat different from the RT-treated tumours, with a larger portion of intratumoural cysts. These tumours also presented a reduced tumour cell density. Dramatic effects were observed when RT was combined with RIT, with a pronounced growth reduction seen in all combination treatment groups. Pronounced tumour volume reduction was also evident in both the RT + RIT ((131)I-TS1) group and RT + RIT ((131)I-TS1/(131)I-H7) group, and in some animals no tumour remained at all. The morphology of the tumour remnants at day 22 was chaotic with a drastically changed histology, with presence of abundant cysts, low fractions of Ki67-positive cells, reduction in cell density, increased amounts of connective tissue and a decrease in necrotic regions. Again, apoptotic cells could be identified, scattered throughout the viable regions. Combining RT and RIT seems to generate an efficient treatment with convincing and long-lasting tumour growth inhibition, which is reflected in a highly aberrant histology within the tumour. Results obtained in this study indicate that both necrosis and apoptosis may be involved in the process leading to this efficient therapy of epithelially derived tumours.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Mu, Xiangkui, et al. (författare)
  • The effect of fraction time in intensity modulated radiotherapy : theoretical and experimental evaluation of an optimisation problem.
  • 2003
  • Ingår i: Radiotherapy and Oncology. - 0167-8140 .- 1879-0887. ; 68:2, s. 181-187
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND PURPOSE: In intensity modulated radiotherapy (IMRT), the complexity and the number of treatment fields have expanded. This may imply that the delivery time for each fraction becomes prolonged. In a number of IMRT techniques used in the clinic, the delivery time per fraction is usually 10-15 min, sometimes more than 15 min. In studies on human skin, prolonged delivery time is shown to cause significant reduction of radiation effects compared with acute irradiation. In this paper the effect of changes in fraction delivery time was studied by in vitro irradiation of mammalian cells. MATERIAL AND METHODS: Chinese hamster fibroblasts (V79-379-A) were used for simulating clinical situations. Most experiments were performed with 2Gy/fraction with 4-h intervals in 40-60 replicates. Each fraction was divided into different subfractions, simulating the delivery of a complicated treatment. The effect of changing the delivery time for each fraction was studied. Parameters for the cell survival curve and repair kinetics were determined experimentally. The same methods were also used for large fraction sizes (8Gy). The validity of the most widely used models in the literature, all derived from linear-quadratic formalism, were tested against the experimental results. RESULTS: The effect of prolonging the fraction time for 2-Gy fractions was underestimated by the biological models. The experiments showed that 10-min prolonged delivery time gave a ratio between surviving fractions at 2Gy (S-ratio) of 1.054 with a 95% confidence interval (CI) 1.030-1.080, while the models predicted 1.007 and 1.009. Extending the fraction time to 20 min gave an S-ratio of 1.063 with CI of 1.045-1.080, while the models predicted 1.012 and 1.014. For 8-Gy fractions, there was a good agreement between predications and experimental results. The ratio between surviving fractions at 8Gy is 1.370 with CI of 1.300-1.440, while the models predicated 1.37 and 1.35. CONCLUSIONS: The effect of prolonging fraction time at conventional dose/fraction is underestimated by biological models. Prolonging the fraction time will spare tissues with a fast DNA repair. There is a risk for sparing tumours. This should be considered when IMRT technique is implemented in the clinic.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy