SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(LANNFELT L) srt2:(2020-2024)"

Sökning: WFRF:(LANNFELT L) > (2020-2024)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Surendran, Praveen, et al. (författare)
  • Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals
  • 2020
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 52:12, s. 1314-1332
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to similar to 1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency <= 0.01) variant BP associations (P < 5 x 10(-8)), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were similar to 8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
  •  
2.
  • Hampel, H., et al. (författare)
  • The Amyloid-beta Pathway in Alzheimer's Disease
  • 2021
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 26, s. 5481-5503
  • Tidskriftsartikel (refereegranskat)abstract
    • Breakthroughs in molecular medicine have positioned the amyloid-beta (A beta) pathway at the center of Alzheimer's disease (AD) pathophysiology. While the detailed molecular mechanisms of the pathway and the spatial-temporal dynamics leading to synaptic failure, neurodegeneration, and clinical onset are still under intense investigation, the established biochemical alterations of the A beta cycle remain the core biological hallmark of AD and are promising targets for the development of disease-modifying therapies. Here, we systematically review and update the vast state-of-the-art literature of A beta science with evidence from basic research studies to human genetic and multi-modal biomarker investigations, which supports a crucial role of A beta pathway dyshomeostasis in AD pathophysiological dynamics. We discuss the evidence highlighting a differentiated interaction of distinct A beta species with other AD-related biological mechanisms, such as tau-mediated, neuroimmune and inflammatory changes, as well as a neurochemical imbalance. Through the lens of the latest development of multimodal in vivo biomarkers of AD, this cross-disciplinary review examines the compelling hypothesis- and data-driven rationale for A beta-targeting therapeutic strategies in development for the early treatment of AD.
  •  
3.
  • Hampel, H., et al. (författare)
  • The amyloid-beta pathway in Alzheimer's disease: a plain language summary
  • 2023
  • Ingår i: Neurodegenerative Disease Management. - : Future Medicine Ltd. - 1758-2024 .- 1758-2032. ; 13:3, s. 141-9
  • Tidskriftsartikel (refereegranskat)abstract
    • What is this summary about? This plain language summary of an article published in Molecular Psychiatry, reviews the evidence supporting the role of the amyloid-b (Ab) pathway and its dysregulation in Alzheimer's disease (AD), and highlights the rationale for drugs targeting the A beta pathway in the early stages of the disease. Why is this important? A beta is a protein fragment (or peptide) that exists in several forms distinguished by their size, shape/structure, degree of solubility and disease relevance. The accumulation of A beta plaques is a hallmark of AD. However, smaller, soluble aggregates of A beta - including Ab protofibrils - also play a role in the disease. Because A beta-related disease mechanisms are complex, the diagnosis, treatment and management of AD should be reflective of and guided by up-to-date scientific knowledge and research findings in this area. This article describes the A beta protein and its role in AD, summarizing the evidence showing that altered A beta clearance from the brain may lead to the imbalance, toxic buildup and misfolding of the protein - triggering a cascade of cellular, molecular and systematic events that ultimately lead to AD. What are the key takeaways? The physiological balance of brain A beta levels in the context of AD is complex. Despite many unanswered questions, mounting evidence indicates that A beta has a central role in driving AD progression. A better understanding of the A beta pathway biology will help identify the best therapeutic targets for AD and inform treatment approaches.
  •  
4.
  •  
5.
  • de la Vega, Maria Pagnon, et al. (författare)
  • The Uppsala APP deletion causes early onset autosomal dominant Alzheimer's disease by altering APP processing and increasing amyloid beta fibril formation
  • 2021
  • Ingår i: Science Translational Medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6234 .- 1946-6242. ; 13:606
  • Tidskriftsartikel (refereegranskat)abstract
    • Point mutations in the amyloid precursor protein gene (APP) cause familial Alzheimer's disease (AD) by increasing generation or altering conformation of amyloid beta (A beta). Here, we describe the Uppsala APP mutation (Delta 690-695), the first reported deletion causing autosomal dominant AD. Affected individuals have an age at symptom onset in their early forties and suffer from a rapidly progressing disease course. Symptoms and biomarkers are typical of AD, with the exception of normal cerebrospinal fluid (CSF) A beta 42 and only slightly pathological amyloid-positron emission tomography signals. Mass spectrometry and Western blot analyses of patient CSF and media from experimental cell cultures indicate that the Uppsala APP mutation alters APP processing by increasing beta-secretase cleavage and affecting alpha-secretase cleavage. Furthermore, in vitro aggregation studies and analyses of patient brain tissue samples indicate that the longer form of mutated A beta, A beta Upp1-42(Delta 19-24), accelerates the formation of fibrils with unique polymorphs and their deposition into amyloid plaques in the affected brain.
  •  
6.
  •  
7.
  • Pagnon de la Vega, María, et al. (författare)
  • Altered amyloid-β structure markedly reduces gliosis in the brain of mice harboring the Uppsala APP deletion
  • 2024
  • Ingår i: Acta neuropathologica communications. - : BioMed Central (BMC). - 2051-5960. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Deposition of amyloid beta (Aβ) into plaques is a major hallmark of Alzheimer’s disease (AD). Different amyloid precursor protein (APP) mutations cause early-onset AD by altering the production or aggregation properties of Aβ. We recently identified the Uppsala APP mutation (APPUpp), which causes Aβ pathology by a triple mechanism: increased β-secretase and altered α-secretase APP cleavage, leading to increased formation of a unique Aβ conformer that rapidly aggregates and deposits in the brain. The aim of this study was to further explore the effects of APPUpp in a transgenic mouse model (tg-UppSwe), expressing human APP with the APPUpp mutation together with the APPSwe mutation. Aβ pathology was studied in tg-UppSwe brains at different ages, using ELISA and immunohistochemistry. In vivo PET imaging with three different PET radioligands was conducted in aged tg-UppSwe mice and two other mouse models; tg-ArcSwe and tg-Swe. Finally, glial responses to Aβ pathology were studied in cell culture models and mouse brain tissue, using ELISA and immunohistochemistry. Tg-UppSwe mice displayed increased β-secretase cleavage and suppressed α-secretase cleavage, resulting in AβUpp42 dominated diffuse plaque pathology appearing from the age of 5–6 months. The γ-secretase cleavage was not affected. Contrary to tg-ArcSwe and tg-Swe mice, tg-UppSwe mice were [11C]PiB-PET negative. Antibody-based PET with the 3D6 ligand visualized Aβ pathology in all models, whereas the Aβ protofibril selective mAb158 ligand did not give any signals in tg-UppSwe mice. Moreover, unlike the other two models, tg-UppSwe mice displayed a very faint glial response to the Aβ pathology. The tg-UppSwe mouse model thus recapitulates several pathological features of the Uppsala APP mutation carriers. The presumed unique structural features of AβUpp42 aggregates were found to affect their interaction with anti-Aβ antibodies and profoundly modify the Aβ-mediated glial response, which may be important aspects to consider for further development of AD therapies.
  •  
8.
  • Swanson, Chad J., et al. (författare)
  • A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer's disease with lecanemab, an anti-A beta protofibril antibody
  • 2021
  • Ingår i: Alzheimer's Research & Therapy. - : BioMed Central (BMC). - 1758-9193. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Lecanemab (BAN2401), an IgG1 monoclonal antibody, preferentially targets soluble aggregated amyloid beta (A beta), with activity across oligomers, protofibrils, and insoluble fibrils. BAN2401-G000-201, a randomized double-blind clinical trial, utilized a Bayesian design with response-adaptive randomization to assess 3 doses across 2 regimens of lecanemab versus placebo in early Alzheimer's disease, mild cognitive impairment due to Alzheimer's disease (AD) and mild AD dementia.Methods: BAN2401-G000-201 aimed to establish the effective dose 90% (ED90), defined as the simplest dose that achieves >= 90% of the maximum treatment effect. The primary endpoint was Bayesian analysis of 12-month clinical change on the Alzheimer's Disease Composite Score (ADCOMS) for the ED90 dose, which required an 80% probability of >= 25% clinical reduction in decline versus placebo. Key secondary endpoints included 18-month Bayesian and frequentist analyses of brain amyloid reduction using positron emission tomography; clinical decline on ADCOMS, Clinical Dementia Rating-Sum-of-Boxes (CDR-SB), and Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog14); changes in CSF core biomarkers; and total hippocampal volume (HV) using volumetric magnetic resonance imaging.Results: A total of 854 randomized subjects were treated (lecanemab, 609; placebo, 245). At 12 months, the 10-mg/kg biweekly ED90 dose showed a 64% probability to be better than placebo by 25% on ADCOMS, which missed the 80% threshold for the primary outcome. At 18 months, 10-mg/kg biweekly lecanemab reduced brain amyloid (-0.306 SUVr units) while showing a drug-placebo difference in favor of active treatment by 27% and 30% on ADCOMS, 56% and 47% on ADAS-Cog14, and 33% and 26% on CDR-SB versus placebo according to Bayesian and frequentist analyses, respectively. CSF biomarkers were supportive of a treatment effect. Lecanemab was well-tolerated with 9.9% incidence of amyloid-related imaging abnormalities-edema/effusion at 10 mg/kg biweekly.Conclusions: BAN2401-G000-201 did not meet the 12-month primary endpoint. However, prespecified 18-month Bayesian and frequentist analyses demonstrated reduction in brain amyloid accompanied by a consistent reduction of clinical decline across several clinical and biomarker endpoints. A phase 3 study (Clarity AD) in early Alzheimer's disease is underway.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy