SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(LaCava John) "

Sökning: WFRF:(LaCava John)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kagan, Jacob, et al. (författare)
  • National Cancer Institute Think-Tank Meeting Report on Proteomic Cartography and Biomarkers at the Single-Cell Level : Interrogation of Premalignant Lesions
  • 2020
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 19:5, s. 1900-1912
  • Tidskriftsartikel (refereegranskat)abstract
    • A Think-Tank Meeting was convened by the National Cancer Institute (NCI) to solicit experts' opinion on the development and application of multiomic single-cell analyses, and especially single-cell proteomics, to improve the development of a new generation of biomarkers for cancer risk, early detection, diagnosis, and prognosis as well as to discuss the discovery of new targets for prevention and therapy. It is anticipated that such markers and targets will be based on cellular, subcellular, molecular, and functional aberrations within the lesion and within individual cells. Single-cell proteomic data will be essential for the establishment of new tools with searchable and scalable features that indude spatial and temporal cartographies of premalignant and malignant lesions. Challenges and potential solutions that were discussed included (i) The best way/s to analyze single-cells from fresh and preserved tissue; (ii) Detection and analysis of secreted molecules and from single cells, especially from a tissue slice; (iii) Detection of new, previously undocumented cell type/s in the premalignant and early stage cancer tissue microenvironment; (iv) Multiomic integration of data to support and inform proteomic measurements; (v) Subcellular organelles-identifying abnormal structure, function, distribution, and location within individual premalignant and malignant cells; (vi) How to improve the dynamic range of single-cell proteomic measurements for discovery of differentially expressed proteins and their post-translational modifications (PTM); (vii) The depth of coverage measured concurrently using single-cell techniques; (viii) Quantitation - absolute or semiquantitative? (ix) Single methodology or multiplexed combinations? (x) Application of analytical methods for identification of biologically significant subsets; (xi) Data visualization of N-dimensional data sets; (xii) How to construct intercellular signaling networks in individual cells within premalignant tumor microenvironments (TME); (xiii) Associations between intrinsic cellular processes and extrinsic stimuli; (xiv) How to predict cellular responses to stress-inducing stimuli; (xv) Identification of new markers for prediction of progression from precursor, benign, and localized lesions to invasive cancer, based on spatial and temporal changes within individual cells; (xvi) Identification of new targets for immunoprevention or immunotherapy-identification of neoantigens and surfactome of individual cells within a lesion.
  •  
2.
  • Minzioni, Paolo, et al. (författare)
  • Roadmap on all-optical processing
  • 2019
  • Ingår i: Journal of Optics. - : IOP Publishing. - 2040-8978 .- 2040-8986. ; 21:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability to process optical signals without passing into the electrical domain has always attracted the attention of the research community. Processing photons by photons unfolds new scenarios, in principle allowing for unseen signal processing and computing capabilities. Optical computation can be seen as a large scientific field in which researchers operate, trying to find solutions to their specific needs by different approaches; although the challenges can be substantially different, they are typically addressed using knowledge and technological platforms that are shared across the whole field. This significant know-how can also benefit other scientific communities, providing lateral solutions to their problems, as well as leading to novel applications. The aim of this Roadmap is to provide a broad view of the state-of-the-art in this lively scientific research field and to discuss the advances required to tackle emerging challenges, thanks to contributions authored by experts affiliated to both academic institutions and high-tech industries. The Roadmap is organized so as to put side by side contributions on different aspects of optical processing, aiming to enhance the cross-contamination of ideas between scientists working in three different fields of photonics: optical gates and logical units, high bit-rate signal processing and optical quantum computing. The ultimate intent of this paper is to provide guidance for young scientists as well as providing research-funding institutions and stake holders with a comprehensive overview of perspectives and opportunities offered by this research field.
  •  
3.
  • Carter, Victoria, et al. (författare)
  • High Prevalence and Disease Correlation of Autoantibodies Against p40 Encoded by Long Interspersed Nuclear Elements in Systemic Lupus Erythematosus
  • 2020
  • Ingår i: Arthritis and Rheumatology. - : Wiley. - 2326-5191 .- 2326-5205. ; 72:1, s. 89-99
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Long interspersed nuclear element 1 (LINE-1) encodes 2 proteins, the RNA binding protein p40 and endonuclease and reverse transcriptase (open-reading frame 2p [ORF2p]), which are both required for LINE-1 to retrotranspose. In cells expressing LINE-1, these proteins assemble with LINE-1 RNA and additional RNA binding proteins, some of which are well-known autoantigens in patients with systemic lupus erythematosus (SLE). This study was undertaken to investigate whether SLE patients also produce autoantibodies against LINE-1 p40. Methods: Highly purified p40 protein was used to quantitate IgG autoantibodies in serum from 172 SLE patients and from disease controls and age-matched healthy subjects by immunoblotting and enzyme-linked immunosorbent assay (ELISA). Preparations of p40 that also contained associated proteins were analyzed by immunoblotting with patient sera. Results: Antibodies reactive with p40 were detected in the majority of patients and many healthy controls. Their levels were higher in patients with SLE, but not those with systemic sclerosis, compared to healthy subjects (P = 0.01). Anti-p40 reactivity was higher in patients during a flare than in patients with disease in remission (P = 0.03); correlated with the SLE Disease Activity Index score (P = 0.0002), type I interferon score (P = 0.006), decrease in complement C3 level (P = 0.0001), the presence of anti-DNA antibodies (P < 0.0001) and anti-C1q antibodies (P = 0.004), and current or past history of nephritis (P = 0.02 and P = 0.003, respectively); and correlated inversely with age (r = −0.49, P < 0.0001). SLE patient sera also reacted with p40-associated proteins. Conclusion: Autoantibodies reacting with LINE-1 p40 characterize a population of SLE patients with severe and active disease. These autoantibodies may represent an early immune response against LINE-1 p40 that does not yet by itself imply clinically significant autoimmunity, but may represent an early, and still reversible, step toward SLE pathogenesis.
  •  
4.
  • Wu, Dong, et al. (författare)
  • Four-Wave Mixing-Based Wavelength Conversion and Parametric Amplification in Submicron Silicon Core Fibers
  • 2021
  • Ingår i: IEEE Journal of Selected Topics in Quantum Electronics. - : Institute of Electrical and Electronics Engineers (IEEE). - 1077-260X .- 1558-4542. ; 27:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Silicon core fibers represent a versatile platform for all-fiber integrated nonlinear optical applications. This paper describes the state of the art in four-wave mixing-based parametric amplification, and wavelength conversion in silicon fibers that have been tapered to improve the material quality, and engineer the dispersion profile. Fibers with submicron core dimensions have been fabricated, and used to demonstrate high gain parametric amplification in the C-Band, and broadband wavelength conversion extending out to the S-, and L-bands. The potential to use these fibers for all-optical signal processing of 20 Gbit/s data signals has also been demonstrated, with a robust all-fiber coupling scheme presented to improve the efficiency, and practicality of these devices. These results highlight the potential of silicon core fibers for use in nonlinear signal processing within future telecommunication systems.
  •  
5.
  • Aad, G, et al. (författare)
  • 2015
  • swepub:Mat__t
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy