SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Lahteenmaki A.) srt2:(2005-2009)"

Search: WFRF:(Lahteenmaki A.) > (2005-2009)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abdo, A. A., et al. (author)
  • Multiwavelength Monitoring of the Enigmatic Narrow-Line Seyfert 1 PMN J0948+0022 in 2009 March-July
  • 2009
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 707:1, s. 727-737
  • Journal article (peer-reviewed)abstract
    • Following the recent discovery of γ rays from the radio-loud narrow-line Seyfert 1 galaxy PMN J0948+0022 (z = 0.5846), we started a multiwavelength campaign from radio to γ rays, which was carried out between the end of 2009 March and the beginning of July. The source displayed activity at all the observed wavelengths: a general decreasing trend from optical to γ-ray frequencies was followed by an increase of radio emission after less than two months from the peak of the γ-ray emission. The largest flux change, about a factor of about 4, occurred in the X-ray band. The smallest was at ultraviolet and near-infrared frequencies, where the rate of the detected photons dropped by a factor 1.6-1.9. At optical wavelengths, where the sampling rate was the highest, it was possible to observe day scale variability, with flux variations up to a factor of about 3. The behavior of PMN J0948+0022 observed in this campaign and the calculated power carried out by its jet in the form of protons, electrons, radiation, and magnetic field are quite similar to that of blazars, specifically of flat-spectrum radio quasars. These results confirm the idea that radio-loud narrow-line Seyfert 1 galaxies host relativistic jets with power similar to that of average blazars.
  •  
2.
  • Raiteri, C. M., et al. (author)
  • WEBT and XMM-Newton observations of 3C 454.3 during the post-outburst phase - Detection of the little and big blue bumps
  • 2007
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 473:3, s. 819-827
  • Journal article (peer-reviewed)abstract
    • Context. The quasar-type blazar 3C 454.3 was observed to undergo an unprecedented optical outburst in spring 2005, affecting the source brightness from the near-IR to the X-ray frequencies. This was first followed by a millimetric and then by a radio outburst, which peaked in February 2006. Aims. In this paper we report on follow-up observations to study the multiwavelength emission in the post-outburst phase. Methods. Radio, near-infrared, and optical monitoring was performed by the Whole Earth Blazar Telescope (WEBT) collaboration in the 2006-2007 observing season. XMM-Newton observations on July 2-3 and December 18-19, 2006 added information on the X-ray and UV states of the source. Results. The source was in a faint state. The radio flux at the higher frequencies showed a fast decreasing trend, which represents the tail of the big radio outburst. It was followed by a quiescent state, common at all radio frequencies. In contrast, moderate activity characterized the near-IR and optical light curves, with a progressive increase of the variability amplitude with increasing wavelength. We ascribe this redder-when-brighter behaviour to the presence of a ""little blue bump"" due to line emission from the broad line region, which is clearly visible in the source spectral energy distribution (SED) during faint states. Moreover, the data from the XMM- Newton Optical Monitor reveal a rise of the SED in the ultraviolet, suggesting the existence of a "" big blue bump"" due to thermal emission from the accretion disc. The X-ray spectra are well fitted with a power- law model with photoelectric absorption, possibly larger than the Galactic one. However, the comparison with previous X-ray observations would imply that the amount of absorbing matter is variable. Alternatively, the intrinsic X-ray spectrum presents a curvature, which may depend on the X-ray brightness. In this case, two scenarios are possible. i) There is no extra absorption, and the X-ray spectrum hardens at low energies, the hardening being more evident in bright states; ii) there is a constant amount of extra absorption, likely in the quasar environment, and the X-ray spectrum softens at low energies, at least in faint X-ray states. This softening might be the result of a flux contribution by the high-frequency tail of the big blue bump.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view