SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lammi M) srt2:(2005-2009)"

Sökning: WFRF:(Lammi M) > (2005-2009)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pulliainen, Outi, et al. (författare)
  • Poly-L-D-lactic acid scaffold in the repair of porcine knee cartilage lesions.
  • 2007
  • Ingår i: Tissue engineering. - : Mary Ann Liebert Inc. - 1076-3279 .- 1557-8690. ; 13:6, s. 1347-55
  • Tidskriftsartikel (refereegranskat)abstract
    • Articular cartilage injuries cause a major clinical problem because of the negligible repair capacity of cartilage. Autologous chondrocyte transplantation is a surgical method developed to repair cartilage lesions. In the operation, cartilage defect is covered with a periosteal patch and the suspension of cultured autologous chondrocytes is injected into the lesion site. The method can form good repair tissue, but new techniques are needed to make the operation easier and to increase the postoperative biomechanical properties of the repair tissue. In this study, we investigated poly-L,D-lactic acid (PLDLA) scaffolds alone or seeded with autologous chondrocytes in the repair of circular 6-mm cartilage lesions in immature porcine knee joints. Spontaneous repair was used as a reference. Histologic evaluation of the repair tissue showed that spontaneous repair exhibited higher scores than either PLDLA scaffold group (with or without seeded chondrocytes). The scaffold material was most often seen embedded in the subchondral bone underneath the defect area, probably because of the hardness of the PLDLA material. However, some of the cell-seeded and nonseeded scaffolds contained cartilaginous tissue, suggesting that invasion of mesenchymal cells inside nonseeded scaffolds had occurred. Hyaluronan deposited in the scaffold had possibly acted as a chemoattractant for the cell recruitment. In conclusion, the PLDLA scaffold material used in this study was obviously mechanically too hard to be used for cartilage repair in immature animals.
  •  
2.
  • Vasara, Anna I, et al. (författare)
  • Immature porcine knee cartilage lesions show good healing with or without autologous chondrocyte transplantation.
  • 2006
  • Ingår i: Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society. - : Elsevier BV. - 1063-4584 .- 1522-9653. ; 14:10, s. 1066-74
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: The purpose of this study was to find out how deep chondral lesions heal in growing animals spontaneously and after autologous chondrocyte transplantation. METHODS: A 6mm deep chondral lesion was created in the knee joints of 57 immature pigs and repaired with autologous chondrocyte transplantation covered with periosteum or muscle fascia, with periosteum only, or left untreated. After 3 and 12 months, the repair tissue was evaluated with International Cartilage Repair Society (ICRS) macroscopic grading, modified O'Driscoll histological scoring, and staining for collagen type II and hyaluronan, and with toluidine blue and safranin-O staining for glycosaminoglycans. The repair tissue structure was also examined with quantitative polarized light microscopy and indentation analysis of the cartilage stiffness. RESULTS: The ICRS grading indicated nearly normal repair tissue in 65% (10/17) after the autologous chondrocyte transplantation and 86% (7/8) after no repair at 3 months. At 1 year, the repair tissue was nearly normal in all cases in the spontaneous repair group and in 38% (3/8) in the chondrocyte transplantation group. In most cases, the cartilage repair tissue stained intensely for glycosaminoglycans and collagen type II indicating repair tissue with true constituents of articular cartilage. There was a statistical difference in the total histological scores at 3 months (P=0.028) with the best repair in the spontaneous repair group. A marked subchondral bone reaction, staining with toluidine blue and collagen type II, was seen in 65% of all animals. CONCLUSIONS: The spontaneous repair ability of full thickness cartilage defects of immature pigs is significant and periosteum or autologous chondrocytes do not bring any additional benefits to the repair.
  •  
3.
  • Piltti, Juha, 1982-, et al. (författare)
  • Proteomics of chondrocytes with special reference to phosphorylation changes of proteins in stretched human chondrosarcoma cells.
  • 2008
  • Ingår i: Biorheology. - : IOS Press. - 0006-355X .- 1878-5034. ; 45:3-4, s. 323-335
  • Tidskriftsartikel (refereegranskat)abstract
    • For proteomic analysis, cartilage molecular composition is a challenging mixture of highly glycosylated proteoglycans and triple-helical collagens, which constitute the major part of cartilage macromolecules. Selective separation of these molecules from the minor components is generally needed before mass spectrometry-based identification of lower-abundancy proteins is possible. The cell density of cartilage is also very low, therefore, cell cultures offer an easier approach to study cellular responses of chondrocytic cells, e.g., to mechanical stimuli. In this study, we investigated the phosphorylation events in human chondrosarcoma cells during cellular stretching. Human chondrosarcoma cells were stretched to 8% strain at a frequency of 1 Hz. One set of experiments included cellular stretching which lasted 2 hours, and the other one included experiments of 2 hours daily treatment for up to 3 days. Two-dimensional polyacrylamide gel electrophoresis combined with chromatographic phosphoprotein pre-enrichment and electrospray ionization mass spectrometry-based protein identification was used to reveal changes of phosphoproteins in cells exposed to cyclic stretching. We discovered that 2 hours cyclic stretching increased the phosphorylation of moesin, elongation factor eEF1D and leprecan, while the phosphorylation of elongation factor eEF1B decreased after cellular stretching. Western blot analyses with phospho-specific antibodies suggested that stretching induces phosphorylation of ERK of the MAP kinase pathway, but did not induce phosphorylation of phosphatidylinositol 3-kinase. In conclusion, the proteomic approach revealed that cellular stretching induced specific phosphorylation changes in chondrosarcoma cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy