SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lamprecht R. E.) "

Sökning: WFRF:(Lamprecht R. E.)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
2.
  • Crous, P. W., et al. (författare)
  • Fusarium : more than a node or a foot-shaped basal cell
  • 2021
  • Ingår i: Studies in mycology. - : CENTRAALBUREAU SCHIMMELCULTURE. - 0166-0616 .- 1872-9797. ; :98
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent publications have argued that there are potentially serious consequences for researchers in recognising distinct genera in the terminal fusarioid clade of the family Nectriaceae. Thus, an alternate hypothesis, namely a very broad concept of the genus Fusarium was proposed. In doing so, however, a significant body of data that supports distinct genera in Nectriaceae based on morphology, biology, and phylogeny is disregarded. A DNA phylogeny based on 19 orthologous protein-coding genes was presented to support a very broad concept of Fusarium at the F1 node in Nectriaceae. Here, we demonstrate that re-analyses of this dataset show that all 19 genes support the F3 node that represents Fusarium sensu stricto as defined by F. sambucinum (sexual morph synonym Gibberella pulicaris). The backbone of the phylogeny is resolved by the concatenated alignment, but only six of the 19 genes fully support the F1 node, representing the broad circumscription of Fusarium. Furthermore, a re-analysis of the concatenated dataset revealed alternate topologies in different phylogenetic algorithms, highlighting the deep divergence and unresolved placement of various Nectriaceae lineages proposed as members of Fusarium. Species of Fusarium s. str. are characterised by Gibberella sexual morphs, asexual morphs with thin- or thick-walled macroconidia that have variously shaped apical and basal cells, and trichothecene mycotoxin production, which separates them from other fusarioid genera. Here we show that the Wollenweber concept of Fusarium presently accounts for 20 segregate genera with clear-cut synapomorphic traits, and that fusarioid macroconidia represent a character that has been gained or lost multiple times throughout Nectriaceae. Thus, the very broad circumscription of Fusarium is blurry and without apparent synapomorphies, and does not include all genera with fusarium-like macroconidia, which are spread throughout Nectriaceae (e.g., Cosmosporella, Macroconia, Microcera). In this study four new genera are introduced, along with 18 new species and 16 new combinations. These names convey information about relationships, morphology, and ecological preference that would otherwise be lost in a broader definition of Fusarium. To assist users to correctly identify fusarioid genera and species, we introduce a new online identification database, Fusarioid-ID, accessible at www.fusarium.org. The database comprises partial sequences from multiple genes commonly used to identify fusarioid taxa (act1, CaM, his3, rpb1, rpb2, tef1, tub2, ITS, and LSU). In this paper, we also present a nomenclator of names that have been introduced in Fusarium up to January 2021 as well as their current status, types, and diagnostic DNA barcode data. In this study, researchers from 46 countries, representing taxonomists, plant pathologists, medical mycologists, quarantine officials, regulatory agencies, and students, strongly support the application and use of a more precisely delimited Fusarium (= Gibberella) concept to accommodate taxa from the robust monophyletic node F3 on the basis of a well-defined and unique combination of morphological and biochemical features. This F3 node includes, among others, species of the F. fujikuroi, F. incarnatum-equiseti, F. oxysporum, and F. sambucinum species complexes, but not species of Bisifusarium [F. dimerum species complex (SC)], Cyanonectria (F. buxicola SC), Geejayessia (F. staphyleae SC), Neocosmospora (F. solani SC) or Rectifusarium (F. ventricosum SC). The present study represents the first step to generating a new online monograph of Fusarium and allied fusarioid genera (www.fusarium.org).
  •  
3.
  • Maes, S.L., et al. (författare)
  • Environmental drivers of increased ecosystem respiration in a warming tundra
  • 2024
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 629:8010, s. 105-113
  • Tidskriftsartikel (refereegranskat)abstract
    • Arctic and alpine tundra ecosystems are large reservoirs of organic carbon. Climate warming may stimulate ecosystem respiration and release carbon into the atmosphere. The magnitude and persistency of this stimulation and the environmental mechanisms that drive its variation remain uncertain. This hampers the accuracy of global land carbon–climate feedback projections. Here we synthesize 136 datasets from 56 open-top chamber in situ warming experiments located at 28 arctic and alpine tundra sites which have been running for less than 1 year up to 25 years. We show that a mean rise of 1.4 °C [confidence interval (CI) 0.9–2.0 °C] in air and 0.4 °C [CI 0.2–0.7 °C] in soil temperature results in an increase in growing season ecosystem respiration by 30% [CI 22–38%] (n = 136). Our findings indicate that the stimulation of ecosystem respiration was due to increases in both plant-related and microbial respiration (n = 9) and continued for at least 25 years (n = 136). The magnitude of the warming effects on respiration was driven by variation in warming-induced changes in local soil conditions, that is, changes in total nitrogen concentration and pH and by context-dependent spatial variation in these conditions, in particular total nitrogen concentration and the carbon:nitrogen ratio. Tundra sites with stronger nitrogen limitations and sites in which warming had stimulated plant and microbial nutrient turnover seemed particularly sensitive in their respiration response to warming. The results highlight the importance of local soil conditions and warming-induced changes therein for future climatic impacts on respiration.
  •  
4.
  •  
5.
  • Pironi, L., et al. (författare)
  • COVID-19 infection in patients on long-term home parenteral nutrition for chronic intestinal failure
  • 2023
  • Ingår i: Clinical Nutrition Espen. - : Elsevier BV. - 2405-4577. ; 55, s. 212-220
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and aims: To investigate the incidence and the severity of COVID-19 infection in patients enrolled in the database for home parenteral nutrition (HPN) for chronic intestinal failure (CIF) of the European Society for Clinical Nutrition and Metabolism (ESPEN). Methods: Period of observation: March 1st, 2020 March 1st, 2021. Inclusion criteria: patients included in the database since 2015 and still receiving HPN on March 1st, 2020 as well as new patients included in the database during the period of observation. Data related to the previous 12 months and recorded on March 1st 2021: 1) occurrence of COVID-19 infection since the beginning of the pandemic (yes, no, unknown); 2) infection severity (asymptomatic; mild, no-hospitalization; moderate, hospitalization no -ICU; severe, hospitalization in ICU); 3) vaccinated against COVID-19 (yes, no, unknown); 4) patient outcome on March 1st 2021: still on HPN, weaned off HPN, deceased, lost to follow up.Results: Sixty-eight centres from 23 countries included 4680 patients. Data on COVID-19 were available for 55.1% of patients. The cumulative incidence of infection was 9.6% in the total group and ranged from 0% to 21.9% in the cohorts of individual countries. Infection severity was reported as: asymptomatic 26.7%, mild 32.0%, moderate 36.0%, severe 5.3%. Vaccination status was unknown in 62.0% of patients, non-vaccinated 25.2%, vaccinated 12.8%. Patient outcome was reported as: still on HPN 78.6%, weaned off HPN 10.6%, deceased 9.7%, lost to follow up 1.1%. A higher incidence of infection (p = 0.04), greater severity of infection (p < 0.001) and a lower vaccination percentage (p = 0.01) were observed in deceased patients. In COVID-19 infected patients, deaths due to infection accounted for 42.8% of total deaths.Conclusions: In patients on HPN for CIF, the incidence of COVID-19 infection differed greatly among countries. Although the majority of cases were reported to be asymptomatic or have mild symptoms only, COVID-19 was reported to be fatal in a significant proportion of infected patients. Lack of vacci-nation was associated with a higher risk of death.(c) 2023 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.
  •  
6.
  • Lembrechts, Jonas J., et al. (författare)
  • SoilTemp : A global database of near-surface temperature
  • 2020
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 26:11, s. 6616-6629
  • Tidskriftsartikel (refereegranskat)abstract
    • Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
  •  
7.
  • Winkler, M., et al. (författare)
  • The rich sides of mountain summits - a pan-European view on aspect preferences of alpine plants
  • 2016
  • Ingår i: Journal of Biogeography. - : Wiley. - 0305-0270. ; 43:11, s. 2261-2273
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim In the alpine life zone, plant diversity is strongly determined by local topography and microclimate. We assessed the extent to which aspect and its relatedness to temperature affect plant species diversity, and the colonization and disappearance of species on alpine summits on a pan-European scale. Methods Vascular plant species and their percentage cover were recorded in permanent plots in each cardinal direction on 123 summits in 32 regions across Europe. For a subset from 17 regions, resurvey data and 6-year soil temperature series were available. Differences in temperature sum and Shannon index as well as species richness, colonization and disappearance of species among cardinal directions were analysed using linear mixed-effects and generalised mixed-effects models, respectively. Results Temperature sums were higher in east-and south-facing aspects than in the north-facing ones, while the west-facing ones were intermediate; differences were smallest in northern Europe. The patterns of temperature sums among aspects were consistent among years. In temperate regions, thermal differences were reflected by plant diversity, whereas this relationship was weaker or absent on Mediterranean and boreal mountains. Colonization of species was positively related to temperature on Mediterranean and temperate mountains, whereas disappearance of species was not related to temperature. Main conclusions Thermal differences caused by solar radiation determine plant species diversity on temperate mountains. Advantages for plants on eastern slopes may result from the combined effects of a longer diurnal period of radiation due to convection cloud effects in the afternoon and the sheltered position against the prevailing westerly winds. In northern Europe, long summer days and low sun angles can even out differences among aspects. On Mediterranean summits, summer drought may limit species numbers on the warmer slopes. Warmer aspects support a higher number of colonization events. Hence, aspect can be a principal determinant of the pace of climate-induced migration processes.
  •  
8.
  • Lyons, PA, et al. (författare)
  • Genome-wide association study of eosinophilic granulomatosis with polyangiitis reveals genomic loci stratified by ANCA status
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 5120-
  • Tidskriftsartikel (refereegranskat)abstract
    • Eosinophilic granulomatosis with polyangiitis (EGPA) is a rare inflammatory disease of unknown cause. 30% of patients have anti-neutrophil cytoplasmic antibodies (ANCA) specific for myeloperoxidase (MPO). Here, we describe a genome-wide association study in 676 EGPA cases and 6809 controls, that identifies 4 EGPA-associated loci through conventional case-control analysis, and 4 additional associations through a conditional false discovery rate approach. Many variants are also associated with asthma and six are associated with eosinophil count in the general population. Through Mendelian randomisation, we show that a primary tendency to eosinophilia contributes to EGPA susceptibility. Stratification by ANCA reveals that EGPA comprises two genetically and clinically distinct syndromes. MPO+ ANCA EGPA is an eosinophilic autoimmune disease sharing certain clinical features and an HLA-DQ association with MPO+ ANCA-associated vasculitis, while ANCA-negative EGPA may instead have a mucosal/barrier dysfunction origin. Four candidate genes are targets of therapies in development, supporting their exploration in EGPA.
  •  
9.
  •  
10.
  • Voigt, Carolina, et al. (författare)
  • Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw
  • 2019
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 25:5, s. 1746-1764
  • Tidskriftsartikel (refereegranskat)abstract
    • Permafrost peatlands are biogeochemical hot spots in the Arctic as they store vast amounts of carbon. Permafrost thaw could release part of these long-term immobile carbon stocks as the greenhouse gases (GHGs) carbon dioxide (CO2) and methane (CH4) to the atmosphere, but how much, at which time-span and as which gaseous carbon species is still highly uncertain. Here we assess the effect of permafrost thaw on GHG dynamics under different moisture and vegetation scenarios in a permafrost peatland. A novel experimental approach using intact plant-soil systems (mesocosms) allowed us to simulate permafrost thaw under near-natural conditions. We monitored GHG flux dynamics via high-resolution flow-through gas measurements, combined with detailed monitoring of soil GHG concentration dynamics, yielding insights into GHG production and consumption potential of individual soil layers. Thawing the upper 10-15 cm of permafrost under dry conditions increased CO2 emissions to the atmosphere (without vegetation: 0.74 +/- 0.49 vs. 0.84 +/- 0.60 g CO2-C m(-2) day(-1); with vegetation: 1.20 +/- 0.50 vs. 1.32 +/- 0.60 g CO2-C m(-2) day(-1), mean +/- SD, pre- and post-thaw, respectively). Radiocarbon dating (C-14) of respired CO2, supported by an independent curve-fitting approach, showed a clear contribution (9%-27%) of old carbon to this enhanced post-thaw CO2 flux. Elevated concentrations of CO2, CH4, and dissolved organic carbon at depth indicated not just pulse emissions during the thawing process, but sustained decomposition and GHG production from thawed permafrost. Oxidation of CH4 in the peat column, however, prevented CH4 release to the atmosphere. Importantly, we show here that, under dry conditions, peatlands strengthen the permafrost-carbon feedback by adding to the atmospheric CO2 burden post-thaw. However, as long as the water table remains low, our results reveal a strong CH4 sink capacity in these types of Arctic ecosystems pre- and post-thaw, with the potential to compensate part of the permafrost CO2 losses over longer timescales.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12
Typ av publikation
tidskriftsartikel (12)
Typ av innehåll
refereegranskat (11)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Christensen, Torben ... (3)
Martikainen, Pertti ... (3)
Voigt, Carolina (3)
Graae, Bente Jessen (2)
Dietrich, J. (1)
Gabrielli, A. (1)
visa fler...
Lee, H. (1)
Yang, Y. (1)
Lange, C. (1)
Aalto, Juha (1)
Hylander, Kristoffer (1)
Luoto, Miska (1)
Diaz, Sandra (1)
Tang, J. (1)
Irfan, M. (1)
Pesci, A. (1)
Wessels, J. (1)
Cooper, E J (1)
Putaala, J. (1)
Perry, R (1)
Nilsson, R. Henrik, ... (1)
Ostonen, Ivika (1)
Tedersoo, Leho (1)
Christensen, H (1)
Bond-Lamberty, Ben (1)
Dorrepaal, Ellen (1)
Huber, D. (1)
Ardö, Jonas (1)
Goncalves, B (1)
Hudson, A (1)
Moretti, Marco (1)
Wang, Feng (1)
Winkler, M (1)
Baldini, C. (1)
Michel, P. (1)
Dick, J. (1)
De Frenne, Pieter (1)
Verheyen, Kris (1)
Padyukov, L (1)
Gonzalez-Duarte, A. (1)
Page, I (1)
de Vries, R P (1)
Taylor, J. W. (1)
Aerts, R (1)
Dorrepaal, E. (1)
van Logtestijn, R. S ... (1)
Cornelissen, J. H. C ... (1)
Arauz, A. (1)
Zhang, Jian (1)
Gudmundsson, J (1)
visa färre...
Lärosäte
Göteborgs universitet (6)
Stockholms universitet (4)
Lunds universitet (3)
Karolinska Institutet (3)
Umeå universitet (2)
Uppsala universitet (2)
visa fler...
Sveriges Lantbruksuniversitet (2)
Karlstads universitet (1)
Naturhistoriska riksmuseet (1)
visa färre...
Språk
Engelska (12)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (8)
Medicin och hälsovetenskap (3)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy