SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Landelius Tomas) srt2:(2020-2023)"

Sökning: WFRF:(Landelius Tomas) > (2020-2023)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Campana, Pietro Elia, 1984-, et al. (författare)
  • A gridded optimization model for photovoltaic applications
  • 2020
  • Ingår i: Solar Energy. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0038-092X .- 1471-1257. ; 202, s. 465-484
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aims to develop a gridded optimization model for studying photovoltaic applications in Nordic countries. The model uses the spatial and temporal data generated by the mesoscale models STRANG and MESAN developed by the Swedish Meteorological and Hydrological Institute. The model is developed based on the comparison between five irradiance databases, three decomposition models, two transposition models, and two photovoltaic models. Several techno-economic and environmental aspects of photovoltaic systems and photovoltaic systems integrated with batteries are investigated from a spatial perspective. CM SAF SARAH-2, Engerer2, and Perez1990 have shown the best performances among the irradiance databases, and decomposition and transposition models, respectively. STRANG resulted in the second-best irradiance database to be used in Sweden for photovoltaic applications when comparing hourly global horizontal irradiance with weather station data. The developed model can be employed for carrying out further detailed gridded techno-economic assessments of photovoltaic applications and energy systems in general in Nordic countries. The model structure is generic and can be applied to every gridded climatological database worldwide.
  •  
2.
  • Stridh, Bengt, Universitetslektor, 1957-, et al. (författare)
  • Förbättrad beräkning av solelproduktion i Sverige
  • 2020
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Nordligt läge med lägre solstrålning än exempelvis södra Europa och förhållande­vis lågt elpris gör att noggranna förutsägelser av energiutbyte från solcellsanlägg­ningar är av stor vikt när man gör investeringskalkyler i Sverige. Noggrannare beräkningar av förväntad solelproduktion ger mindre ekonomisk osäkerhet, vilket resulterar i en mer resurseffektiv utveckling. Val av meteorologiska data och be­räkningsmetod för kalkyler av solelproduktion är därför av stor vikt.En fråga är därför vilket simuleringsprogram för solelproduktion som är bäst att använda i Sverige. OptiCE, Polysun, PVsyst och PV*SOL med programmens meteo­rologiska databaser visade sig här vara relativt likvärdiga för Stockholm, Norrköping och Visby. Överensstämmelsen är relativt god med de uppmätta vär­dena för solelproduktion under 2019, med skillnader på mindre än ±5%. Men de ger alla 13%-15% för höga värden för Kiruna. PVGIS med databas ERA5 ger lite större avvikelser för Stockholm, Norrköping och Visby än ovan nämnda program men ger ett värde nära det uppmätta under 2019 i Kiruna. SAM och PVGIS med databaserna SARAH eller COSMO ger större avvikelser än ovan nämnda pro­gram. Då SARAH i en jämförande studie hade bäst nog­grannhet är det tänkbart att beräkningarna i PVGIS skulle kunna förbättras genom att välja SARAH i kombi­nation med ett lägre värde än grundinställningen 14% för system­förluster.Den största osäkerheten vid uppskattning av solcellssystems elproduktion kommer från solstrålningsdata. Genom att förbättra solstrålningsdata och göra dem allmänt tillgängliga hjälps investerare att fatta beslut med minskad osäkerhet. Det finns behov av en branschstandard för solstrålningsdata i Sverige. En vidareutveckling av STRÅNG-modellen för solstrålningsdata är önskvärd. Ett standardförfarande hur man beräknar inverkan av skuggning skulle vara värdefullt, då skuggning vid sidan om val av solstrålningsdatabaser kan ha en stor inverkan på utbytet av solel.Solstrålningsklimatet kan förändras över tid, vilket man kan se i upp­mätt solstrål­ning för Sverige. I framtiden kan även pågående klimatföränd­ring ha betydelse för solinstrålning och därmed solenergiproduktion. Data för solstrålning, vind, tempe­ratur och albedo­ från klimatscenarion för två tids­perioder (2030-2065 och 2066-2095) användes för att uppskatta hur solel­produktionen kan komma att påverkas. Resultatet pekar på att solelproduktionen minskar något men att förändringen endast är statistiskt signifikant i det scenario som representerar fortsatt höga kol­dioxidutsläpp och då endast för norra Sverige under den senare tidsperioden. Sett över hela landet beräknas förändringen för denna period hamna mellan -9% (10:e percentilen) och -2% (90:e percentilen) med medelvärde på ca -6%.De kartor för Sverige för optimerade lutningar, solstrålning och solelproduktion som tagits fram med den utvecklade modellen OptiCE är ett verktyg för att bättre förstå, utforma och förbättra installationer av solcellssystem i Sverige.Bland de undersökta modellerna för uppdelning av global horisontell solstrålning i diffus och direkt strålning för att ta fram egna solstrålningsdata för användning i simuleringsprogram är slutsatsen att för timvärden är Engerer2 eller Paulescu och Blaga lämpliga val. För 1-minutvärden visar Yang2 bäst pre­standa.
  •  
3.
  • van Noord, Michiel, et al. (författare)
  • Snow-induced PV loss modeling using production-data inferred PV system models
  • 2021
  • Ingår i: Energies. - : MDPI AG. - 1996-1073. ; 14:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Snow-induced photovoltaic (PV)-energy losses (snow losses) in snowy and cold locations vary up to 100% monthly and 34% annually, according to literature. Levels that illustrate the need for snow loss estimation using validated models. However, to our knowledge, all these models build on limited numbers of sites and winter seasons, and with limited climate diversity. To overcome this limitation in underlying statistics, we investigate the estimation of snow losses using a PV system’s yield data together with freely available gridded weather datasets. To develop and illustrate this approach, 263 sites in northern Sweden are studied over multiple winters. Firstly, snow-free production is approximated by identifying snow-free days and using corresponding data to infer tilt and azimuth angles and a snow-free performance model incorporating shading effects, etc. This performance model approximates snow-free monthly yields with an average hourly standard deviation of 6.9%, indicating decent agreement. Secondly, snow losses are calculated as the difference between measured and modeled yield, showing annual snow losses up to 20% and means of 1.5-6.2% for winters with data for at least 89 sites. Thirdly, two existing snow loss estimation models are compared to our calculated snow losses, with the best match showing a correlation of 0.73 and less than 1% bias for annual snow losses. Based on these results, we argue that our approach enables studying snow losses for high numbers of PV systems and winter seasons using existing datasets. © 2021 by the authors.
  •  
4.
  • van Noord, Michiel, et al. (författare)
  • Utveckling av prognosmodeller och –verktyg för snöpåverkan på solelproduktion via fjärrmätning
  • 2021
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Solcellsanläggningar installeras överallt i Sverige, från Kurland i söder till Kiruna i norr. Förhållandena mellan våra två landsändar är dock rätt stora. Detta projekt har undersökt hur snöfall påverkar elproduktionen från solceller, med fokus på Mellersta och Norra Sverige. Resultaten från drygt 260 anläggningar och upp till sex vintersäsonger visar att snöförluster är något att räkna med. Årliga förluster upp till 20% har konstaterats. I snitt förväntas de flesta anläggningar dock komma undan med årliga förluster under 10% och i många fall under 5%. Tydligt är att förlusterna blir större ju längre norrut och ju närmare fjällen solcellerna befinner sig. För att få en uppskattning på hur stora snöförlusterna kan vara där du befinner dig har ett gratis verktyg publicerats på snosolel.ri.se. Den stora utmaningen i projektet har varit att kunna studera så många anläggningar som möjligt, för att säkerställa att resultaten är relevanta. Därför har historisk produktionsdata för 263 anläggningar analyserats kombinerad med data för solinstrålning, snödjup och temperatur från vädermodeller och satelliter. Med all denna data har projektet lyckats modellera anläggningarnas prestanda över tid, inklusive sådant som skuggning, med relativt bra precision. Genom att jämföra de modellerna med uppmätt produktion under vintersäsongerna har snöförlusterna beräknats. I ett nästa steg jämfördes snöförlusterna för de studerade anläggningarna med två befintliga modeller för att uppskatta snöförluster. Problemet med dessa och liknande modeller har varit att de är svåra att verifiera mot många anläggningar och över stora geografiska områden. Metoden som utvecklades i detta projekt gör det möjligt att utföra verifieringar med befintliga data utan att behöva komplettera med extra mätningar på plats. Det visade sig att ingen av uppskattnings-modellerna var särskilt bra på att uppskatta snöförlusterna per månad, men att den ena gav rätt bra uppskattningar för årliga förluster. Denna modell, utvecklad av Marion m.fl. (2013), har implementerats i ett gratis online verktyg som uppskattar ungefärliga snöförluster för en solcellsanläggning på valfri plats i Sverige (och delar av Finland och Norge). Inledande försök pekar på att det finns potential att utveckla bättre uppskattningsmodeller för snöförluster. Det finns också goda förhoppningar att kunna förbättra precisionen i metoden för att modellera solcellsanläggningarna utifrån deras produktionsdata.
  •  
5.
  • Zainali, Sebastian, 1995-, et al. (författare)
  • Site adaptation with machine learning for a Northern Europe gridded global solar irradiance product
  • 2023
  • Ingår i: Energy and AI. - 2666-5468. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Gridded global horizontal irradiance (GHI) databases are fundamental for analysing solar energy applications' technical and economic aspects, particularly photovoltaic applications. Today, there exist numerous gridded GHI databases whose quality has been thoroughly validated against ground-based irradiance measurements. Nonetheless, databases that generate data at latitudes above 65˚ are few, and those available gridded irradiance products, which are either reanalysis or based on polar orbiters, such as ERA5, COSMO-REA6, or CM SAF CLARA-A2, generally have lower quality or a coarser time resolution than those gridded irradiance products based on geostationary satellites. Amongst the high-latitude gridded GHI databases, the STRÅNG model developed by the Swedish Meteorological and Hydrological Institute (SMHI) is likely the most accurate one, providing data across Sweden. To further enhance the product quality, the calibration technique called "site adaptation" is herein used to improve the STRÅNG dataset, which seeks to adjust a long period of low-quality gridded irradiance estimates based on a short period of high-quality irradiance measurements. This study introduces a novel approach for site adaptation of solar irradiance based on machine learning techniques, which differs from the conventional statistical methods used in previous studies. Seven machine-learning algorithms have been analysed and compared with conventional statistical approaches to identify Sweden's most accurate algorithms for site adaptation. Solar irradiance data gathered from three weather stations of SMHI is used for training and validation. The results show that machine learning can substantially improve the STRÅNG model's accuracy. However, due to the spatiotemporal heterogeneity in model performance, no universal machine learning model can be identified, which suggests that site adaptation is a location-dependant procedure.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy